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Geofisica. — Wave-number-independent theology in a sphere. No
ta <•) del Socio MICHELE CAPUTO. 

ABSTRACT. — We determine the displacement vector and the relaxation caused 
by time varying surface tractions on a spherical Earth model whose anelastic properties 
are described by a class of stress strain relations representing a wide variety of rheologies 
including the Maxwell model and the type which approximates noncrystalline halite 
and granite. It is seen that this class of rheologies is almost wave number independent, 
and that once a solution is found for a boundary condition whose time variation does 
not depend on the wave number, then an approximate solution is found for any other 
boundary condition with the same geometry. 

We then study the particular case of the Burger solid and see that its relaxation is 
described by three different exponentials, one of which is rigorously wave number inde
pendent, whereas the other two are weakly wave number dependent. 

We also study the general solution of the equations of elasticity for a spherical Earth 
model with assigned surface tractions when the stress-strain relations are defined using 
derivatives of fractional order and find a subclass of models having the same relaxation 
time ; we see that the relaxation time is not sufficient to describe the rheology of a 
medium but that the relaxation of the medium needs a much more detailed description 
in the time domain. This rheology causes a splitting of the free modes in a set of 
very close lines in the frequency domain. \ 

We discuss the effect of successive glacial loads on the Earth for this subclass of 
models and find it is possible to still see today the effect of more than one glaciation and 
that the effect of the last glaciation may be masked by the quasi-fossil effect of the pre
vious ones. 

A relation between migration of isotherms and rheology is also considered. 
We show that the reciprocity theorem of Betti is valid also with the stress strain 

relations of the 'generalized Maxwell models. 
We finally find a general solution of the equations which govern the deformation 

of an elastic sphere with Maxwell rheology. 

KEY WORDS: Rheology, wave number, isostasy, glaciations, migration of isotherms, 
reciprocity, Apennines. 

RIASSUNTO. — Reologie quasi-indipendenti dal numero d'onda. Si trovano il vettore 
spostamento ed il rilassamento causati da forze variabili nel tempo agenti in una sfera le 
cui proprietà Teologiche sono descritte da una vasta classe di modelli che generalizzano 
in vari modi quello di Maxwell. Si verifica che queste reologie sono quasi indipendenti 
dal numero d'onda e che quando si trova la soluzione di un problema per una spe
cifica funzione temporale dei vincoli, una soluzione approssimante è immediatamente 
trovata per qualsiasi altra funzione temporale e per la stessa distribuzione geometrica 
dei vincoli. 

(#) Presentata nella seduta del 13 dicembre 1986. 
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Si fanno anche alcune applicazioni a problemi della geofisica. 
Si studia il caso particolare del solido di Burger e si vede che il suo rilassamento è 

descritto da tre esponenziali uno dei quali è rigorosamente indipendente dal numero 
d'onda, mentre gli altri due ne sono debolmente dipendenti. 

Si studia anche la soluzione generale delle equazioni dell'elasticità per una sfera 
con assegnate condizioni al contorno nel caso che le relazioni fra sforzo e deformazione 
contengano derivate di ordine reale e si trova una classe di modelli che hanno lo stesso 
tempo di rilassamento. Si vede che il tempo di rilassamento non è sufficiente per descri
vere una reologia e che questa richiede una descrizione più dettagliata. Si vede inoltre 
che in questo tipo di reologia si ha una moltiplicazione di tutte le righe spettrali a for
mare bande attorno alle righe del modello elastico perfetto. 

Si trova anche una soluzione generale delle equazioni che governano le deforma
zioni di una sfera con reologia regolata dal modello di. Maxwell. 

Si dimostra anche la validità del teorema di reciprocità di Betti nel caso delle reo
logie di Maxwell generalizzate. 

Si discutono infine una relazione fra migrazione di isoterme e reologia nonché l'ef
fetto di successivi periodi glaciali. 

INTRODUCTION 

Because of the too strict limits of applicability, the perfect elastic medium 
and the perfect fluid exist only in theoretical physics. In reality we have media 
which, at constant temperature and pressure, are somehow elastic or fluid and 
have elastic or anelastic properties depending on the frequency and history of 
the phenomena to be studied. The discipline concerned with the related pro
blems is called rheology and is extremely important in many branches of science 
including Geophysics. Moreover, due to the practical difficulty of preparing 
samples of exactly equal physical quality it is also very difficult to verify to a 
satisfactory accuracy some generally accepted theoretical principles such as 
the reciprocity principle which (e.g. Caputo 1986) is still waiting experimental 
verification also for the linear field. The reciprocity principle is not to be con
fused with the reciprocity theorem which will be proved in Appendix 3 for the 
elastic media whose stress strain relations are defined by means of derivatives 
of fractional order and for more general rheologies. 

In particular, rheology is important in the study of the deformation and 
related stresses of the Earth due to the various fields of forces acting on it which 
may arise from the thermal field generating convection within the Earth, from 
gravity acting on mountains and on their isostatic compensation and in general 
on density anomalies, and from the elastic energy released by earthquakes in 
form of decaying elastic waves. 

The determination of the rheology of the Earth has the highest priority 
for the solution of all geodynamic problems with planetary scale and of many 
other theoretical and applied geophysical problems. 

Today the rheology of the Earth and planets, considered from the most 
optimistic point of view, may, at best, be defined mysterious. In practice 
most work done uses rheologies which are defined by one parameter, which is 
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often transduced in the so called relaxation time, or the time required to reduce 
to e~l the stress generated in the anelastic continuum by constant exterior or 
inside forces. 

Because of the lack of direct information, in the past, the rheology of the 
Earth was often discussed by assuming a Maxwell or a Voigt model for the 
stress strain relation, or a standard linear solid. However the analysis (Caputo, 
1983; 1986) of recent laboratory data obtained by various authors (Heard, 1972; 
Carter and Heard, 1970; Heard and Raleigh, 1972; Carter and Hansen, 1983) 
indicates that none of the previously mentioned stress-strain relations fits the 
rheology of Yule marble, granite and polycrystalline halite at various tempe
ratures and confining pressures in the range of linear elasticity. Therefore, 
other forms of stress strain relations had to be found to represent the rheology 
of the above mentioned materials (e.g. Caputo, 1983, 1984 a\ 1986). 

Recently a few other rheologies, more complete from the point of view of 
the number of parameters defining them, have been considered; the models of 
Bingam or Burger (Caputo, 1966; Barbarella, 1973; Sabadini et al., 1985; Ca
puto, 1986; Caldwell and Turcotte, 1979) or that with derivatives of real order 
in the stress strain relations (Caputo, 1966; 1967; 1984 a) have been introdu
ced in Geophysics. However, little effort has been made to approach the pro
blem with a good rationale from the physical and mathematical points of view. 

The solution of the elastodynamic problem for given boundary conditions 
and for the most general type of time varying source function is readily deter
mined when the Green function is known, that is when the solution is known 
for that assigned boundary condition and for a source with frequency indepen
dent spectral content. 

However, there are cases when the problem may be simplified in the sense 
that the solution for a given boundary condition may be used to obtain the so
lution for many other boundary conditions, as we shall study here. 

T H E GENERALIZED STRESS-STRAIN RELATIONS 

Caputo (1984 a; 1986) generalized the Maxwell viscoelastic stress-strain 
relations by assuming 

(1) > T t f + ^Cty — S«Trr./3) = 2 j J L / * 4 + ^ / X / * £ r r 

where X and (x are the elastic parameters, l(t) is the material function and the 
* as usual indicated convolution; here the operator I is applied to both stress 
Tij and strain si<?-. 

We may also generalize the Voigt viscoelastic stress-strain relations by 
assuming 

(2) Ty ~ X §ij err + 2 jx e{j + 2 g* (éy — §0- krr / 3) 

where g (t) is the material function. 
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Combining the Maxwell and Voigt models we obtain the generalized ex
pression of the stress-strain relation of the Standard linear solid 

(3) /** T., + {JL (Ttf — 8y T „ ) =* X 8{j h* krr + 2 n A* £w + 

+ / i * ( - 2 8 i / e r r / 3 + 2ë, i ) 

Assuming that h (t) and fx (t) are different from zero, by taking the Laplace 
Transform (LT) of (3) we find 

(4) T«, Hp + p (T<, - 8{j T i r / 3) = 8<, H (x— 2 F * / 3) Errp + 

+ 2H(lL + Fp)Eijp 

where T^- and Ei<;- are the Laplace Transform (LT) of the stress T{J and 
strain s^ respectively, H (p) and Fx (p) are the L T of the functions h (t) and 
f(t) representing the rheology of the medium and F = Fx/H . 

It has been shown (Caputo, 1983, 1986) that the rheology of polycry-
stalline halite, in the range of linear elasticity, may be tentatively fitted assuming 

(5) H = , ji [(o^ + fb) p + *Ç> {a + Ï)]/{[3C^ — 3 (X + ' JJL) (OS + fb)l 

/(3X + 2(x)]^2 + [3CJI (5 + p) — 30p'(5 + 4) (X + |i)/(3x + 2JI)] j> + 

+ 3Cjiip] ; F =* 0 

where the coefficients a , (3 , â , b , are determined experimentally with constant 

strain rate C experiments (see the Appendix of Caputo 1986) or with creep or 

relaxation experiments. 
Fitting equation (4) in the one-dimensional (s22 = £33 = 0) stress strain 

relation obtained from (4) with F = 0 gives 

(5') T u = E „ [p (X + 2fi/3) + (X + 2^) Hfl/fo + Hf) 

which may be used to retrieve H (j>) using eu and TU observed in rigorously 
one-dimensional laboratory experiments. 

Constant strain rate laboratory experiment data on Yule marble reported 
by Heard and Raleigh (1972) and creep laboratory experiment data on westerly 
granite reported Hansen and Carter (1983) analysed by Caputo (1986) indicate 
that the stress-strain relation defined by (5) represents satisfactorily also the 
rheology of these rocks. 

It must be noted that all the above mentioned laboratory experiments have 
been carried to strains up of the order of 0.01, that is in the non-linear range. 
The data points in the linear range are too scarce to allow reliable results. Other 
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experiments with more data points in the linear range are now available but 
the results of the analysis of the data are in progress and not yet available. 

The deformation and the stress field of the Earth due to surface loads and 
to density anomalies in its interior, in the case of perfect elasticity has been 
studied by many authors; for recent work on this subject one may see the Jour
nal of Geophysical Research (Vol. 85, B, 11, Nov. 1980); fora brief review one 
may see Caputo et al, 1985, and Caputo 1984 b. 

Few studied the case of an anelastic Earth. However, we believe that it 
is of great interest to know the relaxation of the stress and the creep of the 
deformation in the case when the rheology is represented by (5). Specifically 
we shall study here the deformation and relaxation of the stress field with par
ticular attention to the dependence of the relaxation on the wave number of 
the perturbation and we shall see that a wide class of rheologies represented by 
(4) is almost independent of the wavenumber. 

THE DEFORMATION OF THE ELASTIC SPHERE 

The deformation of an elastic layered Earth model caused by surface and 
buoyant forces when the inertial terms may be neglected, as is the case in many 
geological problems, may be computed from the analytic solution of Caputo 
(1984 a)y which is valid also in case of absence of body forces (Caputo 
1961), and is expressed in form of uniformly convergent series 

oo in 

(6) ih = S n S * ftnk Ynfc 
0 0 

f2n+ 11'/» , 

(7) Y„, => p ± l | ^ | - | ] 1 / a P* (cos 6) sin*e cos ty , ft «» 1, 2,..., n 

[^L±l jA-Z^JT" p*-« (cos 8) sin*-» 6 sin (ft — nft, k^n + 
L ZTC \K + n) ! J 

+ 1,,..,2« 

where r, 6 , ty are spherical coordinates centred with the spheres defining the 
Earth model, i defines the *-th layer of the model (*' = 0 is the central one), 
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Xi and (Xi are the elastic parameters, ^ , ^2 » ih a r e the components of the displa
cement along the r , 0 , ty axes. This result has been obtained by Caputo (1961) 
who used a method introduced by Picone (1936) and Fichera (1949). 

YnJc are spherical harmonics and 

<U„* (r) =< «A# r»+i + «A# r - + «A# r»"1 + «A$ r " « 

(8) «V* (r) - «B# r«« + <B# r - + <Bg r*-* +«B# r—« 

(9) «B# - [(« + 3) Y l + n + 5] [(«Yl + « —2) (« + 1)]-» «A^ 

< B ^ - [ ( 2 - « ) T l + 4 - » ] [ « ( ( « + l ) Y ] + « + 3)]-» iA^ 

i*$ =* <A$/n , «B«g = - «A^ (« + 1), Yx = Vf* 

Solutions may be written when body forces are acting on the shells; they 
are given in Appendix E. 

To study the relation between the creep and the wave numbers (Caputo, 
1984 b) it is sufficient to consider the case of a sphere of a radius r0 (i = 0) 
and a surface load defined by 

(io) ^ - f ^ p j e o s e ) 

After applying the boundary conditions at r = r0 we find that the solution, 
in case (10) is applied is 

( » ) 

Ad) = Vnr^(n+l)[n\ + (n-2)y.] 
2ji[(2i^ + 4 » + 3)X + 2(j^ + n + l ) t i . ] *n0 

A ( 3 ) _ w Dn r~n+2 [(n* + 2 ») X + (ft2 + 2 n — 1) p] 
2 (x (1 —ft) [(2 w2 + 4 w + 3) x + 2 (ft2 + n + 1) jx] 

Obviously, due to the linearity of the algebra, the solution with body forces 
or other types of boundary conditions, can be easily obtained. Here we will 
discuss in some detail only the case of absence of body forces and boundary 
conditions given by (10), and mostly consider the cases in which the perturba
tions are simulated with high wave numbers, as it is generally realistic, and 
gravity plays a negligible role (Slichter and Caputo, 1961). The terms with 
ft = 1 have been added for sake of completeness, in fact they represent a 
translation. 
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T H E C R E E P I N P O L A R S P H E R I C A L C O O R D I N A T E S 

In spherical polar coordinates when the rheology is defined by (5) the LT 
of the displacement is obtained as a uniformly convergent series by substituting 

(12) 
X -> QA(X + 2ji/3) + ^ H - ( 2 / 3 ) f H F ] /(,* + pU) 

H-i>H(, i + f F)/(n + *H) 

in the LT of (6) as shown by Caputo (1966, 1985). 
In the case of the boundary conditions (10) we obtain the following ex

pressions for the LT of the Green function for the displacement vector of the 
sphere of radius r0 (D„ = Dn S (t)) with generalized rheology of Maxwell type. 

A = [X(x + T t x) 

n (n + 1) [ A +pU (x + "-^ y)] 

,(«+a)[A+,H(x+»-^±^)(l)](1-S„, 

0 G)' + 

(« —1)(2»2 +4« +3) [ A +pH (\ + 2ra2 + In + 2 
2ra2 +4n + 3 ')] 

r \«-2rD„((x+/)H), 

(13) 

:,£j™ 

U) 2^H ^u 

(2«2 + 4« + 3) |A +/>H U + 2»2+2« + 2 
>)] 

(0 + 
2w2 + 4» + 3 

r / 2rc2 + In + 2 \"1 
(„ - 1) (2.2 + 4« + 3) [A +PH (x + 2 w 2 ; 4 w + 3 ,)J 

/ r \ » - ' r D t ( n + j H ) dY* 
^ y 2JA>H 86 
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From analysis of polycristalline halite and granite Caputo (1985, 1986) 
found that h (t) is of the type (5) 

h (t) = ax er*i* + bx e -Hl 

(14) H ( i>) = (a3 +bi)P +<*A + M i _ *qft + 6Q 

Therefore substituting (14) in (13) we find that Sx and S2 are 

n •— 

4 

(15> Sl = 2 » L""Dn "7f/.(/> + F)°(p« + M/> + N) + 

D, 
»•»-! M S * ^ 8 * ^ ^ 1 " 8 1 » ) 

j T n 

4 

^/>(^ + F ) ( ^ + Mjp + N) 

4 

+ 

] TQ ^ _ \ " -in/ 0 I 2ZJ0H 

' " " r * - * n ~ l p'(p + F)(p* + Mp + i$)J S0 

the definition of Ga^, C3<, By , E3j is given in Appendix A. 
The LT^1 of (IS) is easily found in closed form by expanding it in partial 

fractions. Note that F here is different than in (4) and is defined below; M 
and N are given in (17). 

We must note that one of the poles is px = — (ax$x + è3oci)/(tfi + bx = ) 
— bQlaQ = — F , with % > 0 , px > 0 , ax > 0 , bx > 0 , which depends ex
clusively on the analytic expression of h{t), The other two poles depend on 
n, however, as we shall see for n large the exponents are almost independent 
of n, the poles are: 

(16) p% - (M/2) H 1 + [1 - 4 N/M*]Vi), A = (M/2) ( - 1 + 

— [1—4N/M2]1/*) 
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where 

/ 2 \ i , f „ n2 + n+l Ì 

lm „ K* + T'')* + M X + 2 2 * + 4 . + 3''} 
/ 2 \ f „«* + « + ! 1 

*# ( x + "T" IM 
N = : _ / 2 \ r „ «2 + « + I i ^ X + T ^ + a o { x + 22w2 + 4 w + 3 . , j 

We obtain H from the first of formulas (10) of Caputo (1986) with its 
N = 0; E u is given by the L T of the creep (9) of Caputo (1986), obtained 
with the theoretically applied pressure ô  and confining pressure c 3 . We then 
introduce the values of a , b , a , p obtained from the experimental creep curves 
presented in the paper of Caputo (1986). We find 

H = — [2 (oca + pft)/> + ap (a + b)] (G1 — cr3) JJL/3 [p ((a* + P*)/> + 

+ ap (a + 6)) K - ( ^ + 2 (T3) X/(3 X + 2 ji)) — 2 j i (p + a) (p + p)] 

which gives 

<70 = — (aa + pi) 2 (CTJ — a3) JJL/3 Z ; b0 = — ap (a0 + *o) 2 (ci — cr3) JJL/3 Z 

d0 = [ap (a + b) (Gt — fa + 2 <r8)X/(3 X + 2 ji)) — 2 (a + p) rf/Z 

«o = — 2 (xap/Z ; Z = — 2 JI + (an + pft) ( ^ — (<r, + 2 a8) X/(3 X + 2 JJL)) 

where a , b , a , p are the coefficients of (6) of Caputo (1986) obtained from the 
values of the parameters A , B , D , J of the creep curves presented in Caputo 
(1986). 

M and N depend on n through the term (2 n2 + 2 n + 2)/(2 n2 + 4 n + 3) 
which is a monotonous function increasing from 2/3 for n .= 0 to 1 for /z = 
= oo as shown by the triangles in fig. 1. For most rheological problems of 
geophysics it is allowed to assume that the variation of the function (n2 + » + 
+ l)/(n2 + 2n+ 1.5) is negligible and assume it 2/3. M and N then reduce to 

(18) M = (jjLdo + fto)/(^ + «o); N = ttb{i/(ii + flb).. 

For polycrystalline halite it is a0 < j i , , i0 <̂  (xd0 (Caputo, 1983) then M = 
= ax + Pi and N = a ^ , which give p2 = — Px , pz = — <*i and also the 
exponentials e V , eV may be factored out of their summations. 

13. — RENDICONTI 1987, vol. LXXXI, fase. 2. 
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Fig. 1. - Wave number dependence of the relaxation time of the generalized Maxwell 
solid with the material function h (t) as in (13); circled dots represent (n + 5)/(n + 3), 
squares represent (n2 + n— l)/(w2 + 2 n), triangles represent 2 (n2 + n + l)/(2 n2 + 

+ 4w + 3 , circles represent (w — 2/n . 

Note that in this case px = p^ax\{ax + ix) + pj>ij{ai + M anc^ therefore, 
since the experimental results show that ax ~ bx and ai ^ Pi, it follows that 
P2 ~Ps and px ~ (p3 + p2)/2 . 

The inversion of the LT (15) gives 
I 

Pl—Pl(p2+PB)+P2p* fi—pt(Pl+P*)+PlP» 

, Fi3j»3
8-F14j>3 + F15 1 _ D ^ ( l - 8 l B ) n f K + ii.)(/5 + fl0/6) S ( . 

P3-Ps(pl+P2)+Plp2 J "2tlf--»(fl — 1 ) \ «o(/3+«o/4) 

+ ^_ Ffo + F33j)f — FMft + F» ^ 

P!—p2(Pl+p3)+P1p3 Pl—P3(pl+P2)+Plp2 J J n0 



MICHELE CAPUTO, Wave-number-independent rheology in a sphere 185 

(20) s-.L»L-D»2^i-MÛW" ( ) + l¥ + 

# —A (Pi + A) + A A A —A (ft + A) + A A 

+ Ri3/> - R 1 4 A + R 1 5 A _ D „ r " - i ( l - S l n ) ( K + ! x ) ( / 9 + ^o/io) s m , 
# — À (A + A ) + A A J 2 p (fi — 1) r0-« 1 3o Va + «0/4) ^ ' 

+ A J ^ . + R*>Pl— R 34A+R35 e P l ( + 

/ • 6o A2 — Pi (A + P») + Pi A ' 3 

, R33PI-R34A + R35 ^ + R « f l - R » f r + R» e P 3ai ^ 
}] 

nO 

PÌ — p2Ìpl+Ps)+Plp2 P2 — Ps(pl+P2)+Plp2 J J S0 

the values of C^-, F ^ , R ^ , E^- ,/> are given in the Appendix A. It is worth 
noting that these coefficients depend weakly on n through ratios of polynomials 
fi which are of the same order in n . However one may verify that the Fourier 
Coordinates (FC) of st are weakly dependent on n but the FC of s2 are inversely 
proportional to n . The factors pi in the exponents of the exponentials are 
weakly dependent on n . 

Since a and b have the same order of magnitude and a and p are also of 
the same order of magnitude, the values of p{ are of the order of a , (or p) and 
the transient half life would be only a - 1 sec, (or p_ 1 sec) depending on the confin
ing pressure and the temperature. This implies that the transient would last 
but a short time, then creep would take place for an indefinite time at a vanish
ing rate resulting in a residual finite strain. 

An analysis of (13) shows that the results obtained with the form (14) for 
h (t) apply also to the more general case when h (t) is such that 

00 

(21) lim h (t) = 0 , (h (t) At = finite . 
t-*oo J 

0 

An inspection of (13) shows that for large values of n the terms containing 
p are reduced to (fx + pH)/[x pH which may be factored out of the summation. 
Then the L T _ 1 of (13), in case H (p) is given by (14), contains the time only 
in the function 

(22) - (— + —) S (t) + - ^ + ((d0 - bo/oo - aQ u0lb0)[a0) e~b^ 0 
\<*ù V- / ' °o 

which is factored out of the summations. It is thus clear that this type of 
rheology for large values of n is almost wave-number-independent, is dominated 
by the relaxation time aQjbQ and that, when the geometry of the boundary con-
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dition does not change in time the displacement and stress field, in the time 
domain, are described by convolving (22) with the function ^ 0 ( 0 describing 
the boundary condition in the time domain. 

We shall discuss in Appendix D the case of the Maxwell rheology which 
is a special case of (13) obtained with h (t) = y§ (t), H (p) = y . 

A N APPLICATION TO A GEOPHYSICAL PROBLEM 

To this point no values have been specified* for the FC of the load D n 

and the results obtained are quite general. 
We may now consider the case of geologic interest of the reaction of the 

Earth to the load of polar ice-caps which have been accumulated for some time. 
For this purpose we may use the formulas of the previous paragraphs assuming 
that there is axial symmetry and symmetry with respect to the equator. The 
normal section of the two antipodal caps can then be approximated with a limited 
number of Legendre polynomials obtained by truncating the series 

(23) T U = 112 (1 - cos co) + ^ n P V x (cos co) -

— P2n+i (cos co)] Y2n>0 (cos 6) (^-^y*X <j,0 = / ( 8 ) ^ (0 

where ty0(t) represents the time history of the load, / ( 8 ) represents the follow
ing box-like function which is different from zero on polar caps of radius co 

D , 0 < G < CO , 7U C 0 < 6 < T C 

(24) / (6) = 
| 0 , CO < 6 < 7T —CO . 

The symmetry with respect to the equator has been assumed in order to 
have the system in equilibrium; it is also assumed that the values of co are such 
that the loads on the two regions where / (0) y^ 0 , which are symmetric with 
respect to the equator, have a negligible interaction. 

The solution for a load constant in the time domain is obtained by convolv
ing (19) and (20) with 1 and contains the same exponentials appearing in (19) 
and (20); the S-like term and the constant are substituted with the constant 
and linear terms included in the following formulas 

(25) Sl = 2 n — D n \ fx U0 (fxd0 + b0) + (Jtf/o (/i d0 + / 2 b0) + 
o l z [̂  ro L 

- («. %* + * M + »„/,» £5*] ̂  + 2-^L ̂  [/,«„ (,«1. + 
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+ h) + ^ 0 (/5 d0 + / 6 b0) - (a0 u0f3 + b0 (d0 /3 + KU)) ^ 5 ~ | T^—\ + 
°oh J bouoh) 

— D J r n + 1 W ) / i , r n - 1 n \^uoÂ\ t • 
n l 2 ^ b0f3 " t " 2 [ x ^ n - l * 0 / , J " t " '* -

» r rw+i r 
(26) *2 = 2J n — D n ^ ~ / 7 w0 ({/.do + i0) + ^«0 (/9 d0 + /io ^o) + 

-(a0u0f3 + b0(dofs + b0fi))^f]J-l- + / a 7 ..r/9t/0(txd0 + fe0) + 
*o/3 J *o «o/s 2 ^ - a

 (M — 1) L 

+ Wo (Â do + b0f10) - (a0 «0/3 + b0 (d„/t + «b /„)) Ç^9] -L^ì . + 
«o/s J K u0f3) 

The constant term represents the instantaneous reaction, the linear term 
gives the creep. Convolving (19) and (20) with a Box-life function of duration 
T we obtain the response of the sphere to a load acting for the time T , as in 
first approximation, an ice age polar cap would do. The response of the system, 
is similar to that of the uniaxial laboratory experiment illustrated by Caputo 
(1986) and shown in figure 2 (a and b). 

The mechanisms which produce the variation of height of mountains are 
many; among the most important we may quote: a) tectonic forces, b) erosion, 
c) sinking of the crust in the mantle to generate isostatic adjustment and d) the 
migration of isotherms of the mantle into the portion of the crust forming the 
roots of the mountains, which changes the physical properties of the crust and 
causes flow of its lowest layer. 

Rheology is indirectly involved in a) and b) and directly involved in c) 
and d). I 

Concerning c) and d)f in case the isostatic adjustment has taken place as 
seems true in many cases, the sinking of the mountain range is due to the 
changes in rheological properties of the lowest parts of the roots of the moun
tain range, caused by the migration of the isotherm. This layer of rock with 
new temperature and new rheological properties, due to its buoyancy, would 
eventually migrate towards the surface by moving along the sides of the moun
tain roots. The rate of removal would depend on the rheological properties 
of the crust at the new temperature, and on the distance covered by this material 
in order reach the border of the roots of the mountain range; however the layer, 
with the new temperature and the new rheological properties, would eventually 
cease to support the mountain range and would make room for a new isostatic 
adjustment which would occur at the rate of the migration of the isotherms of 
the mantle into the crust. This rate of migration may be tentatively estimated 
from an analogous phenomenon occurring in the sinking slabs. 
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One considers a slab of 100 km thickness sinking in the mantle with a velo
city of 7 cm/year considering also that when the slab reaches the depth of 700 km 
it loses its rigidity; we may therefore assume that at that depth the isotherm 
which causes a relevant loss of rigidity has reached the centre portion of the 
slab; we thus tentatively obtain a rate of migration of that isotherm into the 
slab of about 5 mm/year. 

The temperature gradient between the upper mantle and the lower crust 
is lower than that between the mantle and the slab at greater depth and we 
may therefore assume that the rate of 5 mm/year estimated above is an upper 
limit for the rate of change to the rheological properties correspondig to the 
new temperature. 

The lighter and viscous material newly formed, will flow along the surface 
separating the roots of the mountain ranges from the lower strata; the rate of 
flow will depend on its viscosity and its elimination will depend on the slope 
and the lateral extension of the roots; a balance between the volume of rocks 
being formed at the new temperature and the volume of outgoing material will 
eventually be reached. 

At steady state, if we neglect the creep of the crust, due to the almost per
fectly elastic response of the crust relative to the mantle, the rate of migration 
of the isotherm gives the rate of change of isostatic support and we may infer 
that the phenomenon of change of height of the mountains associated with c) 
and d) is dominated by the rate of migration of the isotherm in the mantle. 

The lack of isostatic adjustment generates an additional uncompensated 
load and the surface displacement varies in time as in fig. 2 (d) for t < t0. 

The Maxwellian viscosity of the material below the crust should be extre
mely large in order to explain the low rate of height decrease observed in the 
places where there is lack of isostasy as in the Apennines (Caputo et al., 1984) 
which exhibit a rate of height decrease of about 1 mm/year (Arca e Beretta, 1985). 

In this case one would be inclined to seek other rheologies than the gene
rally accepted Maxwell one studied in detail in Appendix D; examples of other 
rheologies are studied in the next section. In fact the rate of height decrease 
in the case of the Apennines would require too large mantle viscosities as seen 
in Appendix D or the presence of active tectonic forces to support the moun
tain range. 

In this particular case however the lack of isostasy under the mountain 
range, associated with the large negative gravity anomaly to the East of the axis 
of the range, which may reveal the presence of a buoyant mass anomaly, indi
cates the possibility of a torque acting on the crust (Caputo .et al., 1984, 1985) 
which in turn may generate a rotation and compensate for the subsidence. 

In the isostatically compensated mountain ranges, besides the mechanism 
of height decrease due to the migration of the isotherm, the other important 
one concerns the crust which is compressed between the load of the moun
tains and that of the isostatic buoyant masses. This would be the case of the 
Alps. A simple one-dimensional model of a 35 km thick slab squeezed by op
posite forces of the order of those generated by the load of the Alps, shows 
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that the observed height decrease of about 1 mm/year is compatible with a 
Maxwellian viscosity of about 5 • 1023 . 

The other possible cause is the migration of the isotherms of the mantle 
and the flow of material along the surface limiting the roots of the Alps which 
would imply a present rate of migration of the isotherm of the order of 1 mm/yr. 

A N EXAMPLE OF NEW RHEOLOGY 

After the rheology of polycrystalline halite, which is of classic type in the 
sense that the relaxation time, related to exponentials, is descriptive of the rheo
logy, it is of interest to study a more general rheology in which the relaxation 
time is not indicative of the behaviour of the continuum after the time to reduce 
the stress to \\e has elapsed. This type of rheology is described assuming 
the following stress-strain relation where appear the derivatives of fractional 
order 

- '- / i^™* dP 

(27) L T [ ^ ] = ^ - V ( 0 ) + ^ L T [ / ] 

where 0 < z < 1 is a real number, which corresponds to the assumption that 
in formulas (3) and (4) we set / , = 0 and 

(28) h = 7]*-*/r (1 — z) H = rip*-1. 

In this case formulas (13) are defined and the determination of s± and s2 

is reduced to find the L T _ 1 of a function of the following type 

(29) [ l M + l / ^ ] [ U + y)B^]/[U + v,C^] 

where U , B , C are functions of n with very limited variation ; the L T _ 1 of 

(29) is computed in the Appendix B . It is 

(30) (U/ji — B U / J I C + B) x (0/YJC + Up (t)lrp + BS (*)/€{* 

X (t) and p (t) are shown in fig. 3 and fig. 4 for several values of z . 

To obtain sx and s2 » i n t n e c a s e Tn v2^ 0 an<i Ti2 = 0 on r = r 0 , (30) must 
be convolved with the function which gives the time history of TU , this elimi
nates the singularity for t = 0 in (30). 
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2-0.2 

a) 

b) 

Figs. 3 a and 3 b. - The function p (t) of the relaxation of the solid whose stress strain 
relation contains derivatives of real order, the time is measured in units of (U/TQ C)1/2. 
For X = (jt and n = 10, U/TQ C IS only 4% more than the asymptotic value 5 j/,/6 TQ (w = oo ). 

In case the rheology is defined by (28) when n is large, in s1 and $2
 o n e 

may factor out of the summations the term 

(31) (H + H ^ H ^ = % ' + 1/H. 
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b) 
Figs. 4 a and 4 b, - As figs. 3 a and 3 b for the function x (*)• 

Then the time depending factor in sx and s2 is 
oo 

(32) X l = S (OM + ((sin TW)/I]7C) [ r~* «-» dr= S (*)/n + J - 1 / ^ (*) 

0 

shown in figs. 5 a and 5 b as *2 - 1 Y (1 — #) . 
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a) b) 

Figs. S a and 5 b. - The function Xi (*) valid for the wave number independent case 
of the solid whose stress strain relations contain derivatives of real order. Time is in sec. 

The convolution of Xi (*) with a Box of duration T gives 

(33) XiB(*)=l/l* + ' * / i r ( l + * ) ; 0 < f < T 

XiB (t) = (*' - (* - T) W (1 + *); t^T 

which are shown in figs. 6 a and 6 b. 
The creep rate 

is negative and asymptotically increasing to zero. 
If the Earth has this type of rheology (Caputo, 1985), and z > 0.6 , we 

may still be seeing now changes in the surface displacement due to the effect 
of previous polar caps, superimposed to the effect of the last glaciation. 

We may note that for T = 2500 years (the approximate duration of a gla
ciation) and for relatively small values of z , the displacement, in case of a con
stant load applied for a time T , first occurs rather rapidly but its rate decreases 
also very rapidly; as one may see in fig. 6 a for t < T and t > T ; however 
for relatively large z and t > T we see in fig. 6 b that the effect of the load is 
removed in a very long time after the load has ceased to act. 
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MM 

Figs. 6 a and 6 b. - The function x l B is the convolution of Xi with a box of duration 
T = 2500 years. Time is in sec. 

On the Earth's surface we have many large mountain ranges with average 
elevation more than 2 km and in the ocean bottoms many abyssal plains with an 
average depth more than 4 km, which indicate that the Earth is not in hydro
static equilibrium. Some of these features have not significantly changed their 
shape in the past millions of years. Remarkable examples are the Rocky Moun
tains in the northern portion of the United States fold and thrust belt whose 
orogen terminated about 45 M yr ago and the "portion of the Appalachian 
Range whose orogen terminated about 225 M yr ago. These examples sug
gest that it is possible that in the long range the rheology of the Earth's crust 
may behave as a continuum of the type described here. 
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Since the last few glaciations occurred at intervals of about 104 years, it 
is possible that we have today in the crust a relevant residual stress due to the 
most recent glaciations. 

In this geophysical application the gravity forces acting on the Earth have 
been neglected; we could have taken them rigorously into account by adding 
to the general solution the particular solution (given in Appendix E) for a 
layer added over the sphere, which would have complicated the formulae wi
thout giving more insight. 

At the present stage in the Earth's evolution we are far from the asympt
otic conditions not only in the tectonically active regions but also in those 
mountain ranges which are not tectonically active such as the Appalachain 
Range and the Rocky Mountains in the northern portion of the United States 
where a large maximum shear stress still exists (Caputo, 1984 a). The same 
applies in general to some intraplate regions which are considered stable, such 
as those mentioned above, where the occasional seismicity confirms the pre
sence of a residual maximum shear stress, which is not surprising as it is 
needed to support the load of the mountains. 

From the discussion made in the previous paragraphs we may infer that 
the shape of the deformation caused by a load on the surface of the Earth, as 
well as the consequent isostatic compensation, would not change in time due to 
the weak dependence of sx and of its time derivative on the wave-number, 
only the amplitude would change. 

T H E Q 

The Q-1 and the phase velocity v of a medium, whose anelastic properties 
are represented by (3) with fx = 0 , are obtained from the complex index of 
refraction n (co) using the response of the medium to an impulse of stress. In 
the one dimensional case we have n2 (to) = H2 (fco)/H2 (oo) where H2 (/co) is 
En °f (5') with T u = 1 . If H is given by (14), substituting in (5 ' ) , we see 
that H2 is the ratio of two second degree polynomials and obtain 

n2 (co) = (a2co2 — e2 — ib2o>)lc0 (co2 — u2 — *d2co) 

n — n r — i Hi 

Q- 1 = 2 tiilnr v = cjnr 

cQ = lim H2 (p) = a2 

p-*oo 

where c is the velocity of the wavefront. 
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Simple algebra gives 

A2 = (((a2co2 - e2)* + *;««)/((«» - uzf + d2
aco2) a*)V* 

B2 = tan-1 (co (w2£2 — d2é?2 + co2 (d2#2 — #2))/((a2co2 — £2) (co2 — #2) + i2d2co2)) 

»< = A2 sin (B2/2) wf = A2 cos (B2/2). 

It may be seen that when co is large then Q~x = (d2<z2 — b2)/ a2u> which 
is always the case when the polynomials in p, whose ratio gives H 2 , have the 
same degree. 

When h (i) = riPJY (1 — z), (H = r\pz~l ; N = 0 ) , we obtain for the one 
dimensional case 

E u « T u ([x (X + 2 jx/3) + (X + 2 (x) rip*)/^ + vj^) 

n2 (co) ± (p* + fx/y))/^ + [x (X + 2 (x/3)/(X + 2 ^Y]) 

and then 

Q-i ^ (coz (sin ( w / 2 ) ) 4 (JL2/3 YJ (X + 2 tx))/(co22 + 

+ li (2 X + 8 jx/3) co* (cos (TU*/2))/(TQ (X + 2 (x) + (X + 2 JJL/3) fx2/(X + 2jx) v)2) . 

When (JL/Y) is small with respect to coz we obtain 

Q-i = 4 (J.2 co~2 (sin TU#/2)/3 r\ (X + 2 jx). 

The rheological model used in this paragraph causes a splitting of the lines 
of the free modes of a sphere into a set of an infinite number of very close lines 
limited in a narrow frequency band (Caputo, 1984) whose width is proportional 
the Q~x . One may easily see that the rheological model represented by (14) 
causes' also a splitting. 

From the records of underground nuclear explosions Caputo (1981) found 
Q == 2000 at 2 Hz, which in turn gives for the P waves assuming X = jx, 

(39) 2000-1 = 4 (4 iz)-z (sin TC*/2)) JJL/9 Y] . 

This equation is a condition for the two unknown # and JX/Y) , 
A second condition equation with the Q _ 1 observed for P waves at a diffe

rent frequency (not yet available with sufficient accuracy) would allow to com
pute z and JJL/YJ for compressional waves. 
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APPENDIX A 

Cu = [((i + a)f + affla (/, + af) 

C12 = [(p. + a) (/id +/J,) + (LUì + 6) (A + «/*)]/« (/a + af) 

Ci» = [A« 0* + «) + M« C/i +/t«) + G*d + è) (/id +fj>)]la (/s + a/4) 

CM = [fu (LUì + *) + j*« t/id + /,*)]/« (/. + af) 

Cu=fi»V-/a(fa + afù 

f = n(n+ 1) ^ x + y | * V • /2 = « («+ l )X + (« + l)(« — 2) ^ 

/ , = (2n« + 4 n + 3 ) ^ + - | - | 1 V , /4 = (2ws + 4W + 3)X + 2(«a + « + l)Ll 

/ B = » ( n + 2)^X + - | - ^ { i , / 6 = »(M + 2)X + («2 + 2 « + l ) L t 

F- -c- -(a ; gff y l'w+M+» <*+«M - f f 
r (a + W Vi + «/») r ^ , I J M / I „ ,M fiV-u rqA + 6/4 ."[ 

F _ r (« + «*) (/1 + flA) /,„/• /1 !*M «*/» + & (d/s + Ô/4) 
"Hfz + af) f b a(f3 + af) 

C31 = (a + JA) (/, + affla (/, + «/«) 

C32 = [(ji + «) (/,d +/6é) + ((id + a) (/, + / , «)]/« (/, + af) 

C33 = [/5« ((* + *) + (*« (/» + /««) + G*d + *) (A + mV" {ft + ah) 

C34 = [fu ((xd + b) + v» {f + mVa (/, + 0/4) 

Csi^Awf*/* (/» + <*) 

•p r («+JJ.) (/5 + afe) r ,f , , , M , , , , , ,y, / ( W 
33 = C3a a*(f+affl [a iÂâ +fib) + b^ + aW ~ -ff 
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F* = C* ~ «2 (/3 + <*> ~ [aufs + b (d/s + m ~ J* lj+^+ b\ 
V - r — (a + t*) (/s + q/e) A„/- /si*» auA + b (d/3 + bft) 35-094 «2(/3 + «/4)

2 * * ~ 7 T «tf+atf 

E u = (a + (x) (/, + af8)[a (/3 + aft) 

E12 = [(a + (x) (/7d + /,ft) + (j*d + i) (/7 + f8d)]la (/3 + a/4) 

Eu, = [M (jx + a) + jjw (/, + «/8) + ([̂ d + b) (f7d +fj>)]la (/3 + a/4) 

EM - [/7« (|*d + *) + (*« (/vd + /s6)]/a (f, + «/,) 

Ei5 = vyfila (/, + a/4) 

/T ==(» + 3 ) ( i ^ + - | - ^ » , /8 = ((» + 3)X + (« + 5)(x)w 

/ 9 = K ( » + 2 ) (X(X + Ì - ( ^ , / 1 0 = M ( w + 2)X + (^ + « —l)(x 

D IT (a + [x) ( / 7 + a/8) , (XM/7 

R13 = E 1 2 - a 2 ( / s + a /4)2 [« ( /3d+/ 4 i ) + M/3 + « / 4 ) ] - - ^ -

R = E (a + ^) ^ / ' + a/s) r™.̂  , » / ^ , j^v. u ^ 
*(f9+qftf [„o / , + W, + J / l ) ]_^ [ i+/ |+|] 

p _ V _ (a + f*) (fi + a/s) w _ (*"/' QM/S + 6 (d/3 + bfA) 
15 " W «2(/3+«/4)2 'M/3 ~¥" .«</. + </«) 

E31 = (a + jx) (/9 + a/]0)/a (/s + a/4) 

E32 = [(« + v) (/9d +/10è) + (jid + é) (/, + a/M)]/a (/, + «/«) 

Egs = [f9u (a + (x) + ,(x« (/9 + fl/io) + ((xd + 6) (/„ + è/10)]/a (/3 + a/4) 

Es* = [/»« ((xd + b) + (xw (/9 + i/o)]/a (/, + a/4) 

E35=/9«[x/a(/3 + a/4) 

R 3 3 - E 3 2 - ( g + . ^ { 9 + f ) [ « ( / 3 d + / 4 i ) + M / 3 + a / 4 ) ] - ^ 

R34 == E; 34 — -^33 " Sl%jg+&n + W. + W-%[->+%%} 
T> _ p (fl + (x) (/> + a/10) ^ (xt</9 auf3 + 6 (d/3 + bft) 

3 5 - 3 4 «2(/a+^r *M / 8~i/r «(y8+a/4) 
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APPENDIX B 

The LT-1 of (13), with Up = t\pz, reduces to the LT-1 of 

(B 1) (1 fa + 1 hp*) (U + y) Bp*)/(U + Y) Q>*) 

By first decomposing it as follows 

(U/TJJIC + B^/Cji + U/r'/T)» C + B/i)C)/(/>' + U/Y]C) 

then noting that (Caputo, 1984) 

oo 

x (') = LT-1
 ((U/T)C + ^ o - 1 ) ^ s i n **/* f ((»•* exP (— rt))l(r" + 

0 

+ (2 U/73C) rz cos TU» + (U/Y)C)2) dr 

we find 

(B 2) LT-* ((U/v1[xC)/(U/v1C + />*)) = ( U / v Q x (*) 

LT-i (Bp'KCv. (U/v)C + **))) = (B/|iC) [S (0 - UX (*)/Y)C] 

LT-1 (B/Cv, (U/v)C + p°)) = BX (i)/Y]C . 

Using the same method of inversion (Caputo, 1984) we find also that 

(B 3) (U/Y)*C) p (*) = LT-1 (U/tf Cp> (U/T)C + />2)) = 

OO 

= sin Tiz/TZ j (2 r2 cos TĈ  + U/YJC) exp (— rt) dr/r2 (r22 + 

0 

+ 2 (U/Y)C) r2 cos TU* + (U/Y)C)2) = [ ^ / r (*) - X (*)]/*> 

which completes the LT"1 of (B 1). 

14. — RENDICONTI 1987, vol. LXXXI, fase. 2. 
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APPENDIX C 

We shall show that the reciprocity theorem * of Betti (1872) is valid also 
when Hooke's law is substituted by (3) with fx = Q . To prove it, we shall 
follow the method of Graffi (1939) who gave the first extention of Betti's theo
rem to the dynamic case. 

Let us consider two states of a body whose anelastic properties are described 
by (3) with fx = 0 . Let the body forces, surface tractions and displacement 
components of the first state be pfxi, tyu, and su, also let pf2i, ty2i and % be 
those of the second state; both states be such that s±i= dsu/dt = 0 , % = 
= ds2/dt = 0 for t = 0, p is the density which may be assumed variable with 
the point. Let Fu , F 2 i , §u , §2i, Su , S2i be the LT of fu , f2i, tyu , ^2*, % , 
S2i-

By taking the LT of the equilibrium conditions we obtain 

(CI) pp*Sii=pFii + TuJj 

pp2 S2i = pF2i + T2ijj 

and also for the surface traction, 

(C2) Tiij*lj = §u 

l2ijy]j== §2i 

where r\j are the components of the unit vector normal to the boundary of 
the body. 

By multiplying the first of (C 1) by S2i and the second by Su and subtract
ing, then integrating over the volume V occupied by the body we obtain 

(C 3) j p (F14S« - FwSn) dV + j(TUjJS2i - T2ijJSu) dV = 0 

v v 

We may verify with lengthy but easy computations that from 

( l l i ; ^ 2 i ) , i = = ^lij,j^2i ~\~ *-lij,fi2ij 

( 1 2ijSli)tj
 == A 2ijjDu -f- 1 2ijjOiit j 
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subtracting and substituting the stress-strain relations we obtain 

( 1 lij^2i),j ( 1 tifili)j = 1 lijjvii A 2ijJ^2i 

and substituting in (C 3) we find 

(C 4) j 9 (FuS2i - F2iSn) dV = ( T ^ S ^ . -T2ijSunj) dS 
V *L 

where S is the boundary of V . 
From here the proof follows exactly as in GrafiTs paper (1939). We note 

that, since p is a function of position, concerning the velocity of seismic waves 
vp, vs, the theorem is valid also for those inhomogeneous bodies with the ve
locities vp and vs subject to one constrain such as vp = f 3 v8. 

Let us now assume that 

(C5) fii=G(t)ali9 <W,= G(*)*n 

fzi = G (t) a2i, <\>2i = G (t) b2i 

where axi, a2i, bu, b2i are functions only of position and independent of time, 
and G (i) is a function of time only. 

Substituting (C 5) in (C 4) we have 

oo oo 

J p \au (jG (t) exp (—pt) dt\ (js2i exp (—pt) dt\\ dV 

V 0 0 

oo oo 

— j? Uu ( f G(t) exp (—pt) d ' V ( | % exp (—pt)dt\\ dV = 

V o o 

oo oo 

= f hu ((G(t) exp (—pt) dt\ ( (s2i exp (—pt) dt\ j dS 

L o 0 

oo oo 

— j lb2iJG(t) exp (—pt) dt) (jsu exp (—pt) dt)\ dS 

S O 0 

or changing the integration order between dt and dV and eliminating 
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I G (t) exp (—pi) dt as factor 

o 

<x> 

J e X P {—Pt) | J P («U*W — «2»%) d V + J (*M 52i — b*iSli) d S [ = 0 

o V 

and finally 

Jp («K G(0 % - a2i G (t) slt) dV + j(bu G (t) *2i - b.H G («) *M) d£ = 0 
v s 

which proves that Betti's theorem is valid also when the stress strain relations 
are expressed by (3) with /x = 0 . 

APPENDIX D 

The solution for Maxwell rheology is obtained by setting H = v, F = 0 
in (4), where v is the viscosity, and in (13). We obtain, by taking in LT_ 1 of 
(13) and considering D„ in (13) independent of p, which implies that the force 
applied to the boundary, in the time domain, is represented by S (t), 
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The effect of a constant force applied for a time T is obtained by convolving 
(D 1) with a Box in the time domain with duration T. 

In the convolution, for t > T , the S (t) term gives no contribution, each 
term independent of t gives a term proportional to T which is almost indepen^ 
dent of n in s± and proportional to tr1 in s2; finally there is the term de
pending on t formed by a factor exponentially increasing with T which, for n 
large, is proportional to n~l in sx and almost proportional to n~2 in $2 . This 
factor is multiplied by an exponential in t\ the exponent is almost the same in 
all terms; its dependence on n is represented in fig. 1 by the triangles. 

The strong dependence on n of all the terms of s2 is due to the structure 
of the mathematical solution (e.g. Caputo, 1961). 

It is thus clear that the most important term is that depending on t and 
that, since the time components of all the terms of the series are almost wave 
number independent we may factor them out of the series which therefore de
pends only on the size of the cap of the sphere where the load is applied. 

This implies that when the solution is found for a given history of the load 
and a particular geometry of the condition on the boundary, then the solution 
may be easily extended to other boundary conditions, with the same history; 
this is easily understood when the boundary conditions are expressed as in (23). 

Obviously the solution (D 1) allows to find solutions for any time history 
of the same geometric boundary condition. 

Another interesting case is that of a constant force applied to a region of 
the surface of the sphere which represents the case of mountain ranges. In 
this case the convolution of (D 1) with a constant has a constant term given by 
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the S (t) function and also by the exponential, a creep function, given by the 
constant term and a negative exponential of the type seen in ( D l ) . 

The most important term is the creep with a rate of the order r0Dn/2 V . 
For mountain ranges such as the Apennines, which were formed about 10 mil
lion years ago and now seem to decrease in height about 1 mm/year, or less, 
and have a relevant lack of isostasy, which would imply that the viscosity of 
the mantle plays an importât role, this creep rate would require a too-large 
Maxwellian viscosity unless active tectonic forces support the load of the moun
tain range. 

Other interesting cases are the Apalachian and the Northern portion of 
the Rocky Mountains whose formation terminated 45 Myr and 225 Myr ago 
respectively and are isostatically compensated. With their present height these 
ranges seem to have extremely high viscosities, much in excess of the values 
generally accepted for the crust. The alternate possibility here is that the 
Maxwell rheology is not appropriate for all the crust of the Earth because the 
tectonic forces here apparently are not active. 

APPENDIX E 

We will find here the solution of the equations of elasticity for a layered 
sphere subject to surface tractions and to body forces. 

Let us assume that in each shell i of a layered sphere, we may expand the 
components of the body force in series of spherical harmonics as follows 
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The r~x and constant terms for n = 0 and n = 1 in (E 1) are introduced to 
make the solution for n = 1 and n = 0 (with non zero body forces) indepen
dent from those of the case of zero body forces; T)nM , SnJci and ThH are constant. 

Using the same procedure of Aquaro (1949) we find that a particular so
lution of the equations governing the elastic deformation of the shell when the 
body forces are expressed by (E 1) may be given as in (6) and (7) where XJnki 

VnM Wnjfci are solution of the following system of differential equations for n > 1 
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which is a simplified version of system (6) of Caputo (1963). A solution 
(for n > 1) is 
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Uiii » V l j H , W U i constants are not solutions of system (E 2) with n = 1 , 
we therefore try solutions proportional to r and find that T l jH must be nil and 
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The particular solution for the case of the layered spherical shell, when the 
body forces in all shells are expressed as in (E 1) with different values of Dnji, 
Sn;i, Tnji in each shell, may be found with the method used by Caputo (1961). 
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