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Meccanica dei solidi e delle strutture. — A generalization to 

nonlinear hardening of the first shakedown theorem for discrete elastic-

plastic structural models <*). No ta <**> del Corr isp. G I U L I O M A I E R (***). 

ABSTRACT. — In the plastic constitutive laws the yield functions are assumed to 
be linear in the stresses, but generally non-linear in the internal variables which are 
non-decreasing measures of the contribution to plastic strains by each face of the yield 
surface. The structural models referred to for simplicity are aggregates of constant-
strain finite elements. Influence of geometry changes on equilibrium are allowed for 
in a linearized way (the equilibrium equation contains a bilinear term in the displace
ments and pre-existing stresses). 

It is shown that shakedown (which means plastic work bounded in time) is 
guaranteed under variable-repeated quasi-static external actions, when the hardening 
behaviour exhibits reciprocal interaction, a suitably defined energy function of the in
ternal variables is convex and the yield conditions can be satisfied at any time by some 
constant internal variable vector and by the linear elastic stress response. 

Some interpretations and extensions of this result are envisaged. By specializa
tion to linear hardening, earlier results are recovered, which reduce to Melan's classical 
theorem for non-hardening (perfectly plastic) cases. 

KEY WORDS: Plasticity; Shakedown; Hardening 

RIASSUNTO. — Una generalizzazione alVincrudimento nonlineare del primo teorema 
di adattamento per modelli discreti di strutture elastoplastiche. Nelle leggi costitutive pla
stiche qui considerate le funzioni di snervamento (o potenziali plastici) sono assunte 
lineari nelle tensioni e genericamente non lineari nelle variabili interne (nondecre
scenti) che rappresentano misure del contributo alla deformazione di ciascuna faccia 
del poliedro che definisce il dominio elastico istantaneo nello spazio delle tensioni. I mo
delli strutturali discreti a cui si fa riferimento per semplicità sono aggregati di elementi 
finiti a spostamento lineare. L'influenza dei cambiamenti di configurazione sull'equili
brio è tenuta in conto in forma linearizzata (con un termine lineare negli sposta
menti e negli sforzi preesistenti). 

Si dimostra che l'adattamento o « shakedown » nella risposta ad azioni esterne va
riabili ripetute quasi-statiche, è assicurato sotto le condizioni che l'incrudimento pre
senti interazione reciproca, una opportuna funzione energia sia convessa nelle variabili 
interne e che le condizioni di plasticità siano soddisfatte ad ogni istante da un vettore 
costante di variabili interne e dalla risposta tensionale elastica lineare. Si accenna a qual
che conseguenza, interpretazione ed estensione di questo risultato. Particolarizzando 
all'incrudimento lineare si ritrovano risultati precedenti che si riducono al classico teo
rema di Melan nei casi di plasticità perfetta. 

(*) This work is part of a research project supported by M.P.I. 
(**) Presentata nella seduta del 29 novembre 1986. 

(###) Department of Structural Engineering, Technical University (Politecnico) 
of Milan, P. Leonardo da Vinci, 32 - 20133 Milan, Italy. 
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1. INTRODUCTION 

The analysis of the inelastic response of structures to variable-repeated 
(in particular cyclic) external actions (such as forces and temperature changes) 
is important and sometimes crucial in various areas of engineering, expecially 
of nuclear and ocean technologies. 

Often the evolution in time of the external actions (briefly, the " loading 
history ") can be foreseen a priori only as for the variation ranges of the govern
ing parameters (" load domain ") . The material behaviour can frequently 
be described as linearly elastic, perfectly plastic (hence, time-independent or in-
viscid) and stable in Drucker's sense (which implies convexity of the yield surface 
and " associative " flow rule, i.e. normality of the plastic strain rate vector to 
this surface). Then the classical shakedown theory provides both illuminating 
qualitative interpretations of the overall mechanical behaviour and rational ana
lysis tools for achieving quantitative information needed for design purposes. 

Shakedown or " adaptation " means boundedness in time of the plastic 
deformations (or at least of the total energy dissipation) and represents a neces
sary, though not sufficient, condition for the safety of any plastic system subjected 
to variable-repeated loads. The classical shakedown theory centred on the 
Bleich-Melan theorem, and the many developments occurred in the last few 
decades have been the subject of comprehensive surveys and unifiect presenta
tions, see e.g. references [1], [2], [3], [4]. Extensions to dynamics, pionereed 
by G. Ceradini, were surveyed in [5]. 

Referring to discrete (finite element) structural models and to 'piecewise-
linearized yield surfaces, the writer developed in [6], [7] and in subsequent pa
pers a shakedown theory allowing for linear hardening. This generalization has 
some theoretical and practical interest for the assessment of safety factors with 
respect to lack of shakedown in the presence of geometric effects (a trade-off 
arises| between such stabilizing or instabilizing effects and hardening or softening) 
and especially for the determination of bounds on post-shakedown and, more 
generally, history-dependent quantities [7]. Several noteworthy results have 
been achieved in recent times by L. Corradi, J.A. K>nig, J.B. Martin, C. Po-
lizzotto, A.R.S. Ponter, F.S.K. Tin Loi and other Authors, mostly in the afo
rementioned framework of piece wise-linear yield surfaces, linear hardening or 
non-hardening behaviour and no influence of displacements on equilibrium 
equations. D. Weichert contributed to the generalization of the theory to large 
displacements with non-hardening constitution. 

However, hardening understood as dependence of yield limits on plastic 
strains, when it is an essential feature of local plastic behaviour, is always non
linear and its simulation in a piecewise linear way is cumbersome and computa
tionally inefficient, as the number of yield modes is drastically increased. 

In this paper general non-linear, instead of linear, hardening (or softening) 
behaviour is allowed for, in association with pie ce wise-linear yield surfaces, di-
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screte structural models and linearized (" second order ") geometric effects on 
equilibrium. Conditions are determined under which shakedown is guaranteed, 
thus further generalizing the main conclusion of ref. [7], i.e. the extension of the 
first (Melan's) static shakedown theorems to linear hardening and geometric ef
fects. Parallel generalizations of other parts of shakedown theory (second, 
Koiter's theorem; Ceradini's dynamic shakedown theorem; various bounds on 
history-dependent quantities) are only envisaged here and will be pursued 
elsewhere. 

2. A N INTERNAL VARIABLE DESCRIPTION OF THE PLASTIC BEHAVIOUR OF ELEMENTS 

The following nomenclature will frequently be used in this paper. Under
lined symbols denote matrices and column-vectors; vector inequalities apply 
componentwise; 0 is a matrix or vector with all zero entries; a tilde means trans
pose. A dot denotes time derivative, time t being an ordering variable, i.e. any 
increasing function of the physical time (this arbitrariness reflects the in viscid 
or time-independent and quasi-static nature of the system considered). Super
scripts e and p mark linear elastic responses to (given) external actions and 
(unknown) plastic strains, respectively; V means " for al l" ; finally, vectors q, e, 
p and Q will collect, in the same order, all components of total, elastic, plastic 
strain and stress, respectively (in this Sec, for a single structural constituent 
or finite element; subsequently, for all the constituents or elements in the whole 
structure or discretized structural model). Other symbols will be defined when 
they are employed first. 

Strains q and stresses Q are understood here in Prager's generalized sense, 
namely: the scalar product of their vectors represents virtual work in the ele
ment concerned; they are intrinsic, " n a t u r a l " variables, invariant with respect 
to rigid body motions. In order to make the subsequent developments more 
explicit without formal complications, two particular kinds of discrete consti
tuents are worth being referred to: (a) the truss member (straight pin-ended 
bar), for which q and Q reduce to scalars (elongation and axial force, respecti
vely); (b) the constant-strain, homogeneous, finite element (four-nodes tetrahe
dron) for three-dimensional continua, where q is the 6-component vector of edge 
elongations and Q defines the corresponding, self-equilibrated nodal forces acting 
in pairs along the edges; (c) the constant strain, homogeneous, three-nodes finite 
element in plane stress, q and Q being 3-vectors of its "na tu r a l " variables. 
In case (a) the affine transformation which relates the bar Q vs. q law to the ma
terial a vs. e law in uniaxial stress states, is self-evident. 

In case (b) it is worth noting that, similarly, the Q sv. q relationship reflects 
the a vs. I material constitution in triaxial stress states. In fact, let the 6-vec-
tors cr and t collect the independent components of the Cauchy stress tensor 
and the actual strains (with "engineering definition" shear strains); the we 
have : 
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(la,b) s-Tc , ir^-i-TQ 

where V is the element volume, T a non-singular matrix easily evaluated on 
the basis of the vertex coordinates of the tetrahedrical finite element. An 
analogous comment holds for case (c), Therefore, the elastic plastic behavioural 
law described below for finite elements or structural constituents can be directly 
conceived as a material constitution. For other categories of (" refined ") finite 
elements, formal procedures apt to generate element laws in generalized " natu
ral " strains and stresses from elastic material laws have been pointed out in 
general by Corradi [8] and are only implicitly referred to here. 

Keeping in mind the above preliminaries on its mechanical meaning and 
coverage, the following set of constitutive relations is adopted to describe the 
local defor inability of constituents; 

(2) Q-^E* 

(3a,b) < ^ N Q —K —R(A)gO 

(4*, 6) Â ^ O , 0À = O 

(5) p=^NÀ. 

Eq. (2) specifies the elastic behaviour, E being a symmetric positive definite 
matrix of elastic moduli. Eq. (3)-(S) govern the dissipative, non-holonomic 
(path-dependent, irreversible) plastic behaviour. Vector K collects positive con
stants or "yield limits". The yield functions are gathered in vector 0 and 
defined by (3a): by taking N as a constant matrix whose columns are unit vec
tors, they are assumed to be linear in the stresses, so that the instantaneous po-
lyhedriçal elastic domain (/> < 0 in the Q space, changes at yielding according 
to the " hardening rule " R (A) assumed to be expressed by differentiable func
tions. This " rule " establishes a generally nonlinear dependence of the changes 
R of yield limits on the " internal variables " or " plastic multipliers " contained 
in vector X. These variables are non-decreasing (4a), non-negative functions 
of time (as we will assume I =; 0 at £ — 0) and play a key role in the present 
context. Each one represents a measure of the total amount of plastic flow, 
i.e. the contribution to plastic strains, due to the "activation" of the relevant 
yield plane; it can be also conceived as a measure of the sliding in a single direc
tion of one of the one-dimensional dissipative slip devices contained in the ele
ment as a phenomenological interpretation of irreversible re-arrangements oc
curring at the microscale, see e.g. Martin [9], [10]. Therefore we prefer to call 
Jl vector of " internal variables ", instead of plastic multipliers as in several 
previous papers, 

The "complementarity" equation (4 6), which applies componentwise in 
view of the sign constraints on the two vectors, rules out activation of a yield 
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plane, say the z-th, if it does not contain the stress point Q (§{ < 0). Finally* 
eq. (5) expresses the associative nature of the plastic flow with respect to the 
yield surface (p directed as the generalized outward normal to this surface). 

The following remarks on the constitutive relation set (2)-(5) are of interest 
in what follows: 

(a) As a consequence of (3b) and (4) one can write (" Prager's consi
stency rule ") : 

(6) iX=*Q. 

In fact, if Xt > 0 at instant t} then ^ — 0 and ${ +• $% dt = 0 by inequality 
(3b) and, hence, 6{ = 0; if ^ < 0 and <j>< < 0, then X,- = 0 by (4b); if ò{ < 0 
and (ĵ  — 0, then Xt = 0 again by (Ab), which otherwise would be violated at 
t+ St. 

(b) The plastic work, i.e. the energy dissipated in the whole element 
over the interval 0 i—\t, using eqs. (5) and (3a) can be expressed in the forms; 

(7) 
t I t 

D(*) = [Q(T)P(T)C!T= jlNQdT=^ ri(0 + K + R)ck 

or, through eq. (4 b) : 

(8) D(t)^D'(t) + D"(i) 

having set: 

(9) D' (0 = KA (t) =* D' (/) 

t i 

(10) D" (t) s f R [X (T)] À fT) dT =» J R [x (T)] dA , 
0 0 

(c) Of the two addends into which the dissipated energy has been split, 
the former D' can be called " perfect plasticity dissipation " as it is related to 
the original yield limits only; it is a linear function of the final internal varia
bles / (t) and, hence, does not depend on the path 1 (7), 0 ^ T <J t, in the I 
space. The latter addend D" due to hardening (and referred to henceforth 
as " hardening dissipation ") generally depends on the path / (T) over 0 <̂  T <; t. 
It does not and, hence, it becomes a function D" (X) of the final distribution 
of internal variables A (t), if and only if the following alternative equivalent 
conditions hold (indices / and j running over all yield planes): 
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9R r 92 D " "1 9R 
( l i e ) H s ^ L - T - U i ^ H . 

The equivalent conditions (11) for the existence of function D" (X) require 
the symmetry of the " instantaneous hardening " matrix H (X) (the Hessian 
matrix of D), i.e., mechanically speaking, a "reciprocal interaction " among 
yield modes at yielding. 

(c) Assume that eqs. (11) holds, i.e. that there exists a hardening 
dissipated energy function D" (X) and, hence, a total dissipation D (X). This 
is convex, and so is D (A), if and only if: 

(12) D " (A) ^ D" a*) + R (a*) (A — a*), v x, A*. 

In fact, R(/*) is the gradient of D" (X) in A#, eq. (11#). 

(d) For linear hardening matrix H is constant. Then its symmetry 
implies that D" is a quadratic form of X, its positive semi-definiteness that D" 
is convex. Under this restriction one goes back to the piece wise linear consti
tutive model assumed for the theory developed in [6], [7] and for subsequent 
developments by various Authors. 

3. BASIC RELATIONS FOR DISCRETE STRUCTURAL MODELS 

An aggregate of the elements described in Sec. 2 will be considered here 
with the following additional nomenclature and conventions. The relations 
(2)-(5) governing the local, element deformability will be conceived henceforth 
as cohering all m members or elements simultaneously, e.g.: Q == {Q1. . . Qm}; 
0 = $ . . . Qm} ; E = diag [E1. . . Em] ; N ~ diag [Nl . . , Nw] etc. Subscript o 
denotes quantities pertaining to the initial static situation S0 supposed to 
be elastic (Ao™0) and strictly stable (with positive definite stiffness matrix); 
subscript co will mark their asymptotic values in time (at t =; oo). Let the 
variable repeated external actions be equivalent nodal forces collected in ^-vector 
F (t) and imposed (e.g. thermal) generalized strains defined by vector 0 (t). 
The n-vector u (t) and the vectors Q (t) , p (t) etc. define the unknown quasi-
static response of the system to the above loads in terms of nodal displace
ments, stresses, plastic strains etc., respectively. They are governed by the 
constitutive eqs, (2)-(5) encompassing all elements and, under the hypothesis 
of " small deformations ", by the linearized equations of compatibility and 
equilibrium: 

(13) Cu e + p + 6 q 
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(14) C Q + G ( Q 0 ) « = F . 

Here matrix C depends only on the geometry of S ; the (symmetric) " geo
metric stiffness " matrix G depends linearly on Q0; both are constant in time. 
The pre-existing stresses Qa intervene also in (3) but can conveniently be ac
comodated in the original yield limit vector, which becomes: 

(15) K = K 0 - N Q 0 

K0 being the original yield limit vector in an hypothetical stressless state. 

For the above defined structural model, linear-elastic displacement and 
stress responses to the external actions can be expressed as follows: 

(16 a, b) ue = . S-1 F + S-1 CE9 ; where : S = CEC + G 

(17 a, b) Q* =* ECS-1 F + Z9 ; where: Z = ECS"1 CE — E 

It is assumed here that the elastic equilibrium is stable in the starting si
tuation 2 0 , i.e. that the overall elastic stiffness matrix S, eq. (166), is positive 
definite. Displacements and stresses due to plastic strains p are obtained from 
(11) and (17), respectively, for F = 0 , e = p = Nx: 

(18) « P ^ S ^ C E N X 

(19) Q*> = Z N A . 

4. GENERALIZED FIRST SHAKEDOWN THEOREMS 

On the basis of the preliminaries of Sees. 2 and 3 and in view of subsequent 
use, we define the following energy quantity for the whole system: 

(20) V=D"(X) + ^LmX9 

having set: 

(21* , b) D" ==^h D;' {lh) ; W = — N Z N = * W . 

Clearly, in general U is a functional of the whole yielding process I (T), 
0 ^ ^ ^ * > î-e. a path-dependent function of/L, as the hardening dissipated 
energy D^' is so; U becomes function U (X) of the distribution of internal va-

12. — RENDICONTI 1987, vol. LXXXI, fase. 2. 
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riables X at time t, if D^ is so for all m elements, i.e. if all constituents exhibit 
(reciprocal) hardening complying with eqs. (11). 

With reference to discrete or discretized structures governed by eqs. (2)-
(5) and (13)-(15), the following sufficient criterion for adaptation will be proved 
below. 

THEOREM 1. When the hardening behaviour exhibits reciprocal interaction, 
eq. (11), and the energy function U (X) is convex, then shakedown occurs if a con
stant internal variable vector Xm exists such that : 

(21) 0* = NQ« — WA* — K — R (A*) < 0 , V* ^ 0 

Proof. For the actual evolution of the structure the stress distribution at 
any t J> 0 is conceived as the superposition of elastic stress responses to the 
current external actions (17) and to the plastic strains (19) developed up to t 
(Colonnetti's interpretation of structural plasticity): 

(22) Q = Qe+Zp. 

Account taken of eq. (22) and of the constitutive relations (3), (5) interpreted 
as concerning all elements (see Sec. 3), we can write for the current yield func
tions : 

(23) 0 = NQ* — WA — K — R (/) g 0 , V* ̂  0 . 

Let us define the time function: 

(24) L (0 - U (X) - U (A*) - (Ï _ f*) ( | ^ # _ 

It will be called Ljapunov function in view of similarities to well known 
procedures in dynamic stability problems. The following circumstances are 
worth noting. 

(a) Because of the hypothesis of reciprocal hardening in the sense of 
eqs. (11), the hardening dissipated energy D " is a (path-independent) function 
of the internal variable vector. Therefore, function U (X) according to (20) 
exists and, hence, so does function L (t) for any cho en X*f whatever the actual 
plastic evolution / (t) of the system may be. 

(b) Because of the convexity hypothesis, function L (t) is non-nega
tive: L (t) 2> 0 for any t. 
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Through eqs. (10) and (20) and easy manipulations, the Ljapunov function 
can be given the more explicit expression: 

(25) L (t) = D " (A) — D " (A*) — R (A*) (A — A*) + — (A — A*) W (A — A*). 

Its time derivative reads, by virtue of (10): 

(26) L (t) = R (A) À — R (A*) Â + (A — A*) W i 

or, alternatively, using (10), (21), (22) and constitutive relations and mar
king by an asterisk quantities related to the fictitious constant plastic strains 
px^m* through (22): 

L (t) = À [R (A) — R (A*) — NQ? + NQP*] — 

(27) = ; I [NQ*>* + NQ* — R (A*) — K — ( ( N Q P •+ NQ* — R (A) — K)] 

The hypothesis inequality (21), together with (27), implies that: 

(28) L (*) ^ 0 ; L (t) = 0 if and only if A = 0 . 

The hypothesis (21) means also that there is a number [3 > 1 such that: 

(29) NQ* — WA* — R (A*) ^ p-1 K , V* ^ 0 

whence, pre-multiplying by —A <g 0: 

(30) — ANQ* — AWA* f AR(/ *) ^ — p-1 KA . 

By summing (27) and (28) and taking into account (26), we derive a crucial 
link between the Ljapunov function L (if) and the actual time evolution of the 
system: 

(31) — L ( * ) ^ ( l — p - ^ K Â , V * ^ 0 

By integration in time from t~0 to * — o o : 

(32) L ( 0 ) - L ( o o ) ^ ( l - £ " ' ) & „ , . 

Since L has been shown to be a non-negative and non-increasing function 
of time under the hypothesis stated, this inequality assures that X^ is bounded, 
i.e. that the system will shakedown under the history of external action F (t), 
e(t). 
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THEOREM 2. Shakedown cannot occur if no constant internal variable 
vector 1* exists such that : 

(33) NQ* — WA* — K — R ( A * ) ^ 0 , W ^ O . 

Proof. By its very definition, shakedown means that, eventually in time, 
the actual plastic strain distribution will be defined by a bounded vector 1^ 
and no further yielding will occur. Hence, inequalities (31) are satisfied for 
A# = Xœ after adaptation in an unlimited time interval. In such interval the 
parameters governing the external actions attain all values included in the as
signed loading domain, this fact being implicit in th© very notion of (quasi-
static) variable repeated loads. Therefore, after shakedown they will reach 
any values assumed before it and, hence, if adaptation occurs, inequality (31) 
must be fulfilled for all t ^> 0 at least by 1* = : Xœ. If it cannot be fulfilled by 
any 1* for all t :> 0, then adaptation is ruled out. 

It is worth noting that the above statement, in contrast to the former, is 
not subjected to any restriction on the hardening (or softening), nor to any 
condition on the energy U (t). 

5. DETERMINATION OF THE SAFETY FACTOR 

As in the classical context, through a customary argument founded on a 
perturbation SK > 0 on the original yield limits K, it is possible and useful 
for numerical applications to combine the two statements proved in Sec. 5 into 
a single statement cf. e.g. [1], [9]. This provides a necessary and sufficient 
criterion for shakedown in the following terms: 

Unified statement. When the hardening behaviour (of all elements) exhi
bits reciprocal interaction, eq. (11), and the energy function U (A) is convex, 
then shakedown occurs if and only if a constant internal variable vector A# 

exists such that: 

(34) NQ* (t) — WA* — R (/*) ^ K , \ft :> 0 . 

In order to confer an operative, computational interest to the above cri
terion, consider the projection of the elastic stress vector Qe

h(t) in element h 
on the outward normal unit vector Ny relative to the /-th yield plane in the 
stress space of that element. Evaluate its maximum over the given " loading 
domain" in the space of the parameters governing the external actions F (t), 
8 (t). Then, for all j and h = ; 1 . . . m, generate the vector: 

(35 a, b) M = {. . . Mf . . .} , with Mf = max {Nf Q% (t)} . 
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Consider a common multiplier of all external actions or " load factor " 
a >̂ 0. In the jargon of engineering plasticity, " safety factor " with respect 
to inadaptation (and, hence, eventual failure) is the value s of a such that for 
a ïg s the structure shakes down, for a > s it does not. 

The above unified statement clearly permits to cast the search for the safety 
factor into the following non-linear programming problem: 

(36) s = max a , subject to: Ma — WA* — R (X*) ^ K . 
a,A* 

Qualitative and computational features (such as conditions for convexity and 
solvability, dualization, etc.) of this problem will be discussed elsewhere. We 
anticipate here the remark that in (36) the feasible region (and, hence, the pro
gramming problem itself) is convex if the components of vector R are concave 
functions of A. 

6. MECHANICAL INTERPRETATIONS AND SPECIALIZATIONS TO PREVIOUS RESULTS 

The physical meaning and implications of the convexity condition to which 
the results of Sec. 4 are subjected, can be elucidated as follows. 

THEOREM 3. The convexity of the energy function U (A), eq. (20), entails 
the overall stability of the system, whatever set of yielding modes may become active 
in its evolution. 

Proof. Overall stability here means that the second order work requi
red by any infinitésimal configuration changes and performed by the external 
force changes needed to préserve equilibrium cannot be negative: 

(39) - 1 - F M S ^ O , VÛ. 

Note first that, by virtue of (16), (18): 

(40) FÛ :^ F (ûe + ùP) =* ûe Sùe + .Fti* . 

For any set of compatible (but otherwise arbitrary) kinematic variables 
(primed) and any set of quantities representing an actual statical process, we 
can write: 

(41) Fu' - Qq' + uGu' . 

This is readily verified using (13), (14) and reduces to an usual virtual wokr 
equation for G = 0. Applying eq. (39) twice, one obtains: 
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(42 ay b) F i* = Qe ( ^ + p) + ueGÙ^ ; Q*> èe + u* Gùe = 0 

whence, through the symmetry of matrices G and E: 

(43) Ffi* = Q*jp + Qe<> — Q?èe=;Qep. 

Now, taking the time derivative of the yield functions (23) 

(44) ^ = ; NQ* — WÂ — H (X) X 

and using the constitutive equations (5), (6), we obtain: 

(45) QfP=* i ( W + H)Â. 

Substitutions of (43) into (41) and of this into (38) lead to: 

(46) Fti = u* Sii- + A(W + H) A. 

The former addend on the r.h.s. of (44) is non-negative because of the 
assumed stability of the (elastic) starting situation (F = 0 , A = 0 at t — Q); 
the matrix in the latter is the Hessian matrix of the energy function U and, 
hence, is positive semi-definitive if U is convex. Thus stability in the sense 
(35) is guaranteed under the stated hypotheses. 

It is worth noting in passing that the convexity condition above shown to 
be sufficient for overall stability, is by no means necessary for it. 

Also noteworthy is the trade-off between matrix W (containing the elastic 
and connectivity properties and, through G, the geometric effects) and the 
hardening matrix H concerning local plastic behaviour. In principle, lack of 
convexity of one addend can be compensated by the other. 

If I the configuration changes are assumed to have no influence on equili
brium (G — 0 ; "first order", small deformations theory) matrix W is always 
positive semi-definite and, hence, the relevant addend in the expression of the 
energy function U is certainly convex. Then possible instabilizing effects 
jeopardizing the convexity of U ÇK) may only be provoked by material insta
bility (" softening ") reflected by the Hessian hardening matrix H (A). 

Particularizations to earlier results by adopting more restrictive assump
tions may provide further insight into and a clearer perspective for the results 
presented in what precedes. 

For linear hardening behaviour (H = constant, i.e. R depends linearly on 
A), the results of ref. [7] are recovered. If configuration changes are assumed 
to hav eno influence on equilibrium (G — 0), then QP — Zp are selfequilibrated 
stresses. 

For non-hardening systems (R =- 0 , H = 0) constant selfstresses (or re
dundant internal forces which govern them) can be assumed as test variables 
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in the shakedown criterion, instead of the internal variables A#. Then, the 
conditions on the energy function U (X) are certainly trivially satisfied and the 
classical Melan's theorem for the present classes of discrete structures, is arrived 
at (see e.g. [9], [11], [12]). 

7. CLOSING REMARKS 

In what precedes " a priori " shakedown conditions have been established 
and interpreted mechanically for elastic plastic structures with local behaviour 
which exhibits generally non-linear hardening. " A priori " means applicable 
without performing the evolutive non-linear analysis, i.e. resting on constitu
tive properties and on linear elastic responses to external actions. Thus pre
vious works have been further extended and generalized. 

The following limitations should be noticed. As for the material (or local 
constituent) behaviour law, the yield functions have been linearized with 
respect to (generalized) stresses and for each yield mode a non-decreasing in
ternal variable has been assumed to measure its contribution to plastic (ge
neralized) strains. This assumption is uncontroversial for one-component 
structures such as trusses, beams and frames, but represents only a possible 
convenient approximation of the constitution usually adopted for multicom-
ponent structures and continua. The effects of geometry changes have been 
allowed for here only through an additional term linear in the displacements 
and in the pre-existing stresses (at t = 0, stresses due to pre-existing constant 
loads). This assumption may be unrealistic in many situations. 

In the presence of the geometric and/or physical (hardening) stabilizing 
effects, the safety factor with respect to inadaptation is expected to be very 
sensitive to the trade-off between the two effects and, in particular, to the har
dening law assumed. Therefore, its numerical determination " per se " may 
be of limited (practical interest (e.g. with isotropic hardening shakedown always 
occurs for obvious reasons). However, the present results concerning shake
down conditions of Melan's type are intended as a basis for a broader gene
ralized theory (to be presented elsewhere), including deformation bounding 
theorems and techniques and their extensions to dynamics. 
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