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Geometria differenziale.

Projective invariant metrics and open
convex regular comes. 1I. Nota di FaBio PODESTA, presentata *) dal
Corrisp. E. VESENTINI.

ABSTRACT. — The aim of this work, which continues Part I with the same title,
is to study a class of projective transformations of open, convex, regular cones in R” and
to prove a structure theorem for affine transformations of a restricted class of cones;
we conclude with a version of the Schwarz Lemma holding for affine transformations.

KEeEy woORDS: Projective connections; Regular cones; Projective transformations.

Ri1assuNTO. — Metriche invarianti proiettive e coni aperti convessi regolari. In que-
sta Nota, proseguimento della Nota I dallo stesso titolo, si studia, nell’ambito dei co-
ni aperti, convessi, regolari di R” una classe di trasformazioni proiettive, nonché il
gruppo delle trasformazioni affini, per il quale si fornisce un teorema di struttura ed
un analogo del Lemma di Schwarz.

INTRODUCTION

This work, which continues Part I with the same title, is devoted to the
study of projective transformations of open, convex, regular cones in R*: more
precisely it will be shown (Theorem 4.1) that a particular class of projective
automorphisms of the cones, introduced by Gentili ([4]), is a subgroup of the
full projective transformation group; in view of the reduction theorem for projec-
tive transformations, proved in Part I, we furnish a structure theorem (Theo-
rem 5.4) for affine transformations in the case of self-adjoint, affine-homoge-
neous and irreducible cones. We conclude with a version of the Schwarz
Lemma holding for affine transformations (Theorem 5.4).

§4. A GROUP OF PROJECTIVE TRANSFORMATIONS

Gentili ([4]) has introduced a group of transformations acting on open
convex regular cones Q by considering the image 7 (Q) under the embedding

i:R* P
(4.1)
i(xl,...,xn)=(1,x1,...,xn)

(*) Nella seduta del 13 dicembre 1986.
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(with (%9, %,, ..., x,) homogeneous coordinates on P?) and setting
(4.2) - GL(Q,P") ={4e PGL (n,R) | § (: (Q)) =i (Q)}.

We want to prove that GL (Q,P?) is a subgroup of Proj (), when we
read its action on Q through the map i. The following lemma holds:

LemMmA 4.1. Let M be a C®-manifold with symmetric connection : then a

diffeomorphism is a projective transformation if and only if it maps geodesics into
geodesics up to parametrization.

THEOREM 4.1. Let Q be an open convex regular cone in R*. Then GL (Q, P?)
is a closed subgroup of Proj (Q).

Proof. Let w:R™?!—P” be the canonical projection and define
4.3) W = {(x,%1,...,%)€ R | (L ay,..., +x,)e Q and x,€ R}

Since Q is regular we have that =1 (Q) =W+ W-. Let ¢ € GL (Q, P?)
and e GL (# +1,R) inducing ¢ : then § (W+ U W-) =W+ W-: since
we study only the action of ¢ on Q, we can suppose that‘q: (W+) =W+,
changing { into - if necessary. Consider now the mapj: Q — W+ given by
J@®,. o x) =1,%,...,%,) and the map 7 : W+ — {1} x Q >~ Q given by

T(Xos Xy, %) =(1, %%, ..., %,[%), so that the following diagram is
commutative
i ¢

0 —t i@ —¥ i) —S g

(4.4) > “I x

wt—2% W

From (4.4) it follows that the action of { on Q is given by 7o oj. Now
W+ is an open convex regular cone and its characteristic metric G is given by
the direct sum of the metric on Q and the Poincaré metric on R*. Both the
maps j and § preserve geodesics with their affine parameter, hence by Lemma 4.1
we need only prove that v preserves geodesics (in fact with their affine para-
meter too). Let y:R — W+ be a geodesic with affine parameter ¢ and write
Y () = (o (t),u(¢)) with o(f)e R* and u(f)e QVte R. Then it easy to
see that

— + Z t)) — (t) (t) =0

‘ft;’ () — Gl(t) ( ) =0

(#:5)
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where ( F_;:k) are as usual the Christoffel symbols for the metric g. We are

left to check that the curve v (f) =u (¢)/c () Vi€ R is a geodesic in Q.

fact Vi =1,...,n and Vte R

d*v; 1 d2u 1 do dut
iy = Sy 2 L ) Dy
“6) dt | c(t) & G0y @ 2 &
1
Py OO e OO

By (4.5) we obtain that

d2pi 1 . du’ , duf
() == BT @) — () — O +
47) dz 1 o (%) ds dz
do dut 1 .
~2ara O a O Gy (o ©) #0-
We recall that ¥ xe Q and Ve R} I"k (tx) = —I“L (x)Vvi,j,k=1.

and so from (4.7) we obtain that

i doi do
d,z()+2 Fk(v(t)—d_t'(t)—at_() ) +

dt2

dwi dut
Fe® 3 T O g O e O+

dz
(o) owe]

—ZG(t)Z T (u (2)

(4.8)
PO =
1

dult
dtZ()+ (t)Z l( (t)) dt ()7?()‘*"

1 1 do dut
+ (O.(t))a <dt()> W()—I—Z( (t))z dt (t)—Tt_(t)

In

co,n

From (4.8) and (4.6) it follows that v is a geodesic with affine parameter ¢.
Q.E.D.

§5 THE GROUP OF AFFINE TRANSFORMATIONS OF AN IRREDUCIBLE CONE

In view of Theorem 2.2 if the open convex regular cone Q in R” is self-

adjoint, affinely-homogeneous and irreducible, then Proj (Q) = Aff (Q).

We
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establish now a structure theorem about the group Aff(Q), under the same
hypotheses on Q.

Turorem 5.1, (a) If {F,}, gt denotes the foliation (3.6), then if { € Aff (Q)
vie R} 3ue R} such that { (F,) =F,
(b) Let e Aff(Q). Then e Iso(Q) if and only if there exists at
least one point ge Q at which

, dy, (9) =v(9)
(5.1) or )

dy, (@) =—v (9

(under the usual identification TQ, =R?).

k
Proof. (a) For every xe Q let TQ, = ® T be the De Rham de-
i=0
subspace.

< b

composition, where T is the  euclidean’

Lemma. TO =1L, .

Praof. First of all we note that dim T{® <1, because otherwise there
would be two distinct directions on which the Ricci tensor would vanish, con-
tradicting Theorem 3.1. Since (Q,g) is a symmetric space, at every point
x€ Q the algebra of holonomy is generated by {R(X,Y)|X,Ye TQ,},
where R is the curvature tensor, we have only to prove that Vxe Q

(5.2) 3 Rig (%) #f =0 Vi, k,l=1,...,n
i

to obtain that T{® o L,. Formula (5.2) can be derived directly from (3.9).
Q.E.D.

By a classical result of differential geometry (see e.g. Kobayashi-Nomizu
([7])) every affinity preserves, in the De Rham'decomposition, the subspaces,

k ‘
T and @ T® : let now ¢ be any affinity and ge Q any point of the cone,

=1
with W, W, the leaves through ¢ and { (g) respectively. If ¢'e W, let © be
an arc of geodesic joining ¢ and ¢': then t lies in W, because W is totally geo-
desic. The image of v under ¢ is a geodesic with initial vector perpendicular
to T, = Ly, (by the Lemma), so that it lies entirely in W, and ¢ (¢') e W, .

(6) Let ¢ be any affinity; ¢ establishes an isometry between any leaf
W and its image ¢ (W): indeed let A € Aut (Q) be such that A (W) = ¢ (W)
and consider ¢~ o A that maps W onto itself; since every leaf is Einstein with
the induced metric, it follows that ¢~1o A is an isometry of W . Hence con-
dition (5.1) is equivalent to say that ¢ is an isometry at the point ¢. Our as-
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sertion follows then from a well known result about affinities (see e.g. Ko-
bayashi-Nomizu ([7])). Q.E.D.

Since every affinity preserves the euclidean supspace T® =L, (by the
Lemma), we have that Vye Aff (Q), Vxe Q, 3d,e R* such that

(5.3) dd, (x) =d, - & (¥) .

It is a straightforward matter to verify that the map d¢ : Q — R* defined by
(5.4) dv (x) =d,
is of class C*. But much more is true:

THEOREM 5.2. The function d* is constant (Y e Aff (Q)).
Proof. From (5.3) we obtain

since
(5.6) Zgij (x)xix? =mn Vxe Q.

In order to prove the theorem, we compute

2 () e, = (2 £ (4 () (3 () S5 () 9)) =
61 =3 B @) w0 h @R 2 Do)
g () 5 ()9 423304 () 5 () g ()

Ox® Oxt

Because ¢ is an affinity we can write that
Vxe Q and VA,j,l =1,

65 o @) =T D) o () — 3 Tha (0 () 55 () 2 ).

Replacing (5.8) into (5.7) and using (5.6) we obtain that

° -0  wvi=1,...,n  QED.
Ox?
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So we get a homomorphism d : Aff (Q) -~ R}
(5.9) d(y) =1d”|

where we have used the same notation to indicate the function d* and its con-

stant value. By Theorem 5.1 the kernel of this homomorphism is exactly
Iso (Q).

THEOREM 5.3. The homomorphism d is surjective.

Proof. Fix ce R} and choose any isometry I of the leaf F;. We now put
(5.10) xe QY (x) = exp{clog [(b (=) L (b (x)1" ).

It is easy to see that ¢ is a diffeomorphism of Q and that
(5.11) vre Q  Vte R} ¢ (2x) =exp (c log ) ¢ (x) .

The fact that ¢ is an affinity will complete the proof, since (5.11) implies
that d (§) =c. To establish this last fact, we read the action of ¢ on F; X R}
through the isometry ¢, (see (3.7)) considering

=drodody?: F, x R ~F x R!.
Then Vre R¥, Ywe F,

(5.12) J(w,r) =1(w), r).

Since the map r — ¢ of R} onto itself is an affinity, when we endow R¥
Withrthe metric ds? (see Theorem 3.2), our assertion follows from (5.12). Q.E.D.

THEOREM 5.4. Let the cone Q be self-adjoint, homogeneous and irreducible.
Then

(a) Iso (Q) is a closed, normal subgroup of Aff (Q) and the quotient group
is isomorphic to (R} -).

(b)  For any affinity 4 , if Y*e Iso (Q) for some ne Z, then § € Iso (Q).
(c) Let \, be any 1-parameter subgroup of affinities. If v, € Iso (Q)
for some tye R*, then v,e Iso (Q) Vte R..
(d) If  is an affinity and if for some distinct N, A€ R ¢ (Fy) =F,,
_ then e TIso (Q).

(e) Let 4 be an affinity and put Fixy ={xe Q| (x) =«}. If
card {¢ (x) |x€ Fix{} > 2, then §€ Iso (Q).
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Proof. (a) follows immediately from Theorem 5.3

() If Jre Iso(Q) then d(¢7) =(d({))*» =1, hence d () =1 and
ve Iso (Q).

(¢) TIf ¥, is defined as y, =d oy, : R—~R], then there is aec R such
that ¥, =exp (af) Vie R. Since exp(at)) =1 and £,40, we have a =0,
tence vy,€ Iso (Q) Ve R.

(d) By integrating the relation (5.3), we get
(5.13) Vxe Q, Vte R} { (tx) = exp (d¥ logt) ¢ (x) .

Pick any xe F, and choose zeR such that txe F, . Being A2,

then £ 1. Sotmd () =b (1x) = (b (1)) = (exp (& logt) b (x)) = exp
(d logt) ™ & (§ (x)) = exp (d* logt) ™ (x)

Hence
t = exp (dv logt) t£ 1

so that d¥ =1 and is an isometry.
(e) follows from (d). QE.D

We can now establish an analogue of the Schwarz Lemma holding for
affine transformations.

THEOREM 5.5. Let Q be as in Theorem 5.4 and § any affine transformation
If d,, denotes the Riemannian distance on Q , one of the following relations is true.

1) Vx,yeQ dﬂ(q’(x)’ 4’(y))—<-.dﬂ(x’y);
2) V&, Q da(¥(0), 4 () =dg(x,7).

Moreover if dg ($ (x)‘, Y (v)) =dg (x,y) for same distinct points x ,ye Q,
then either ¢ (x) =¢ (y) or e Iso (Q).

Proof. Pick any two points x, y€ Q and let v be the minimizing geodesic
joining x and y with arc parameter s, so that vy (0) =« and y(s,) =y . Then

(5.14) do (4 (%), 4 () < f | sy 7 (5) o ds

For every fixed se [0, s,] we decompose ¥ (s) as follows

(5.15) YO =10) +a0)  with
Y1(5)€ Ly, and Yo ()L va(s)-
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Since q; establishes an isometry between leaves, we ahve

= 11 (5) Iy + by (Yo DZorsy

(5.16)

Let now £,€ R be such that v, (s) =#, v (s) (s is fixed); such a real number
f, exists because v,/s) L L, . Hence (5.3) and (5.6) imply that

| d‘l}y(s) (v2 () ”jo‘y(s) =1 |l dq"‘{(;) (v () “io‘Y(s) =

=15d% |4 oy (9) lghy =257 (d (9))*.

(5.17)

Noting that

(5.18) ton =13y ()l = Y (5) llcs)

we obtain from (5.16), (5.17), (5.18) that

(5.19) I ddyiy (7 9)) vy = I1¥2 ) 1205y 4 (d (D)2 1l 72 (5) I1Zs) -

If d (y) =1 both (1) and (2) are true because { is an isometry. Suppose
d () < 1: Then (5.19) and (5.14) imply that

(5.20) dy (0 (), 9 0) = f 1Y () llyeey ds =dg (%, ).
0

If d (¢) > 1, we can apply the above argument to ¢! to obtain (2). Let
now

dg (W (x), () =d, (x,) for some x54ye Q."

Then (5.14) and (5.19) imply that one of the following two possibilities
occurs:

a) d@) =1 or
b) I ?2 (s) Hy(s) =0 Vse [0 » So] -

If (@) occurs, then ¢e Iso (Q); if (b) occurs, then y (s) is tangent to the
leaf through vy (s) and so x and y lie on the same leaf. Q.E.D.
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