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Analisi matematica. — Integral representation and relaxation for 

Junctionals defined on measures. Nota (#) di ENNIO D E GIORGI, LUIGI 

AMBROSIO e GIUSEPPE BUTTAZZO, presentata dal Corrisp. E. D E GIORGI. 

ABSTRACT. — Given a separable metric locally compact space £1, and a positive 
finite non-atomic measure X on O , we study the integral representation on the space 
of measures with bounded variation H of the lower semicontinuous envelope of the func­
tional 

F (u) = jf(x , M) dX u e L 1 (Q , X , R») 

Q 

with respect to the weak convergence of measures. 

KEY WORDS: Relaxation; Integral representation; Measures. 

RIASSUNTO. — Rappresentazione integrale e rilassamento per funzionali definiti sulle 
misure. Dato uno spazio metrico localmente compatto a base numerabile fì ed una mi­
sura X su tale spazio, positiva, finita e non atomica, si studia la rappresentazione integrale 
del funzionale ottenuto rilassando 

1 (u) = f f(x , u) d X u e L 1 (H , X ; R») 

nello spazio M n (fì) delle misure a variazione limitata su Q, rispetto alla topologia della 
convergenza debole di misure. 

1. INTRODUCTION 

In many problems of Calculus of Variations, given a functional F defined 
on a topological space (X , T), it is useful to introduce the so-called (sequen­
tially) T-relaxed functional F defined by 

F (x) = sup {G (x): G is sequentially T — l.s.c. , G < F} . 

where G : X -* R is said sequentially T-1.S.C. if and only if 

G (* J < liminf G (xh) 
/ï-M-oo 

for every sequence (xh) c X converging to x^e X in the topology T. 

(#) Pervenuta all'Accademia il 6 agosto 1986. 
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When F is an integral functional, it is interesting to find an integral repre­
sentation for the relaxed functional F. General results of this type have been 
obtained in the literature either when fi is a bounded open subset of Rk, X is 
a Sobolev space W1* (Q, ; Rn), T is the weak W1* (Q. ;Rn) topology (or the 
strong lJ> (Q ; Rn) topology) and 

F (u) — f(x ,u,T)u)dx 

(see for instance [1], [4], [9]), or when X is a space ]> (O , X ; Rn), T is the weak 
L*(Q , X; Rn) topology (or the strong L* (Q , X; Rn) topology) and 

F (u) = f(x , u) d X (x) 

where X is a given measure on a separable locally compact metric space CI (see 
for instance [3], [5], [7]). 

In this paper we study the T-relaxation of functionals of the type (see Theo­
rem 2.4) 

FW 
i f(x , u) d X (x) if \L = u • X with u e L1 (Q , X ; Rn) 

+ oo otherwise 

where (JL belongs to the space M^ of the vector valued measures on D, with 
bounded variation, T is the weak topology of measures, / : O X Rn -> [0 , + oo] 

is a function (not necessarily measurable), and * denotes the upper integral. 

Similar results, under measurability hypotheses on / , have been obtained with 
different proofs in [2], [11], [14]. The proof of Theorem 2.4, which guaran­
tees an integral representation for the relaxed functional, is based on an ap­
proach rather different from the one followed in [2], [11], [14], and relies on 
an abstract integral representation theorem for functionals F (fi., B), depending 
on measures (xe Mn and Borei sets B e B(Q) (see Theorem 2.3). 

The integral representation theorem given in this paper is the natural ge­
neralization of the theorem given in [3] concerning functionals F (u , B), depend­
ing on ue 1 ^ ( 0 , X;RW) and B e B(Q). Finally, in the last section of the 
paper we show some examples for which it is possible to compute explicitly 
the relaxed functional. 

2. STATEMENT OF THE RESULTS. 

In this section (D., B , X) will denote a measure space, where Q is a se­
parable metric locally compact space, B is the cr-algebra of the Borei subsets 
of Q,, and X : B -* [0 , + oo[ is a positive, non-atomic, finite measure. 
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For every vector measure \L : B -* Rn and every B e B the variation of (x 
on B is defined by 

| JJL | (B) = sup i 2 I JJL (Bh) I : B A € B , U B A C B , Bh pairwise disjoint I , 

We consider the following spaces: 

Mn the space of all vector measures (JL : B -* Rw with finite variation 
on £1; 

\Jn the space of all X-measurable functions u : Q -> Rn with I | u \p dX < 

o 
< + oo; 

C° the space of all continuous functions u : fi -> Rw " vanishing on 
the boundary ", that is for every s > 0 there exists a compact 
subset Ks of Q, such that | ^ (x) | < s for all x e Q — K£. 

The space M^ can be identified with the dual space of C° by the duality 
(see [13], page 40) 

so that a sequence ({JL̂ ) in Mw is weak*-convergent to JJL e Mn if and only if 

{v-h > u)a -> ([JL , u)a for every «eC„° . 

In the following, given u e L*, we denote by u • X the measure of Mn 

defined by 

(u • X) (B) = I u d X for every B e B . 

B 

DEFINITION 2.1. PFe s#y £>to [ieMn is absolutely continuous with re­

spect to X (and we write \x <̂  X) if 

| JJL | (B) = 0 whenever B e B and X (B) = 0 . 

We say that {JL e M.n is singular with respect to X (and we write JJL JL X) if 

| {JL | (Q —B) = 0 for a suitable B e B w#A X (B) = 0 . 

It is well-known that every absolutely continuous measure {JL e Mn is repre­
s e n t ^ le in the form {JL = a • X for a suitable tf e L*; moreover, the following Le-
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besgue-Nykodim decomposition result for measures of Mn holds (see [13] 
page 122). 

PROPOSITION 2.2. For every \x e Mn there exist a unique function a e L^ 

and a unique measure \LSe Mw such that 

i) [x = a • X + y.8; 

ii) [is is singular with respect to X. 

The function a is often indicated by —— . 
dX 

For proper convex functions / : Rw —> ] — oo , -j- oo] we define as usual 
the recession function of / (see [12]) by 

f°° (s) = lim f(w + ts) f o r e v e r y s e Rn ^ 

where w is any point in Rn such that f(w) < + oo; in fact, the definition above 
is actually independent of the choice of w. 

We are now in a position to state our integral representation result. 

THEOREM 2.3. Let <& : Mn x B —•] — oo , -f oo] be a functional satisfying 
the following properties : 

i) O is B-local (that is 0 (JJ. , B) ~ O (v , B) whenever ]L , v e Mn , 
B e B , and | jx —v | (B) = 0); 

ii) for every JJI€ Mw the set function O ([i, •) is finitely additive; 

iii) the functional O ( • , Q) is convex and sequentially lower semiconti-
nuous with respect to the weak*-convergence on M n ; 

iv) there exists u0e L* such that O (u0 , B) < -f oo for every B e B ; 

v) for every \L e Mn singular with respect to X the function t -> O (u0 + 
+ t (ji, Q) — O (u0 , Q) is positively 1 -homogeneous. 

Then, there exists a Borei function § : Q, x Rn -*] — oo , + oo] such that 

a) for every x e Q the function <j> (x , •) w convex and lower semicontinuous 
on Rn; 

b) there exist ae h\ and b > 0 such that § (x , s) > — è | s | + a (x) 
for X-a.e. xe £1 and for all se Rn; 

c) £/ie following integral representation formula holds for every \x e M n : 
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where \L = -~- • X + [L8 is the Lebesgue-Nykodim decomposition of \L, and for 

every x e Q. cj)00 (x , •) is the recession function of <j> (x , •). 

d) the function O00 (x , s) is lower semicontinuous in (x , s). 

By using the integral representation theorem above, we can solve the rela­
xation problem which can be stated as follows. Let / : Q X Rn —* [0 , + oo] 
be a given function (note that no measurability hypotheses are required); for 
every (x€ Mn define 

(2.1) FM 
f(x, u(x)) d X (x) if \i = u • X with u e L^ 

+ oo otherwise, 

where | * denotes the upper integral. We are interested in the characteriza­

tion of the greatest functional <E> on Mn which is sequentially z^-l.s.c. and less 

than or equal to F ; in particular, we want to write O in the form 

(2.2) *<«*)=/*(*• a | ) dx(*) + / + ~ ( * . 5 ^ i ) ditti 
Q n 

for a suitable integrand (j). The following result holds. 

THEOREM 2.4. Assume that the functional F defined in (2.1) is finite in at 
least one u0 e LjJ. Then there exists a Borei function <j> (x , s), convex and lower 
semicontinuous in sf such that (2.2) holds for every [JL G M W . Moreover, <j>°° (x , s) 
is lower semicontinuous in (x, s). 

3. SOME EXAMPLES 

In [10] Olech found a characterization of all integrands <j> such that the 
functional 

<t> (u)= H>(* , u)d\ 

is sequentially w*-'Mn lower semicontinuous on the space LjJ. His result is 
that O is sequentially «)*-Mw lower semicontinuous if and only if there exist 
a sequence of functions ahe L^ and a sequence of functions bhe C° such that 

§ (x , u) — sup {ah (x) + [bh (x), u) : h e N} Vue Rn 
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for \-a.e. xe fi. By using this result, it is possible to find an explicit charac­
terization of the integrand given by Theorem 2.4 in some interesting cases (see 
also for instance [6], [8]). 

EXAMPLE 1. L e t / : H x R n - > R b e the function 

f(x,s) = a(x)\s\ 

where a : Q, —* [0 , + oo] is a measurable function. Then the relaxed func­
tional O of Theorem 2.4 can be represented in the form (2.2) with <j> given by 

cj) (x , s) = a (x) | s | 

where a is the greatest lower semicontinuous function on Q, less than or equal 
to a almost everywhere on Q. If a e LJ^ (Q), it is easy to see that the following 
formula holds 

f (3.1) a(#) = liminf limsup-i- a (t) dt for every xe Q. 

Bp(y> 

EXAMPLE 2. Let a e L} and let / : D x Rw -> R be the function 

f(X9s)=*a(x) Vl + M2. 

If we denote by a the function defined in (3.1), then the relaxed functiona 
O given by Theorem 2.4 can be represented in the form (2.2) with (j> given by 

a(x)1l + \s\2 ifa(x) <a(x) 

a (x) Vl + |* |2 if a(x)>a (x) and | s \ < 

1a*(x) — a*(x) 

a (x) | s | + y a2 (x) — a2 (x) otherwise. 

EXAMPLE 3. Let a : D -> [0 , + co] be a measurable function and let 
/ : Q, X R -* R be the function 

/ ( # , $) = ; a (x) | $ \P (withp > 1). 

Then, the- relaxed functional O given by Theorem 2.4 can be represented 
in the form (2.2) with <j> given by 

<j) (x , s) = : a* (*) | j |P 

file:///-a.e
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where a* is the function 

0 iîxeCl — U 

a* (x) = < + oo if x e U and a (x) = 0 

a (x) otherwise. 

and U is the greatest open subset of Q such that a1^1-^ e L,\oc (U). 
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