ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

Ennio De Giorgi, Luigi Ambrosio, Giuseppe Buttazzo

Integral representation and relaxation for functionals defined on measures

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **81** (1987), n.1, p. 7–13. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1987_8_81_1_7_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1987.

Atti Acc. Lincei Rend. fis. (8), LXXXI (1987), pp. 7–13

Analisi matematica. — Integral representation and relaxation for functionals defined on measures. Nota^(*) di ENNIO DE GIORGI, LUIGI AMBROSIO e GIUSEPPE BUTTAZZO, presentata dal Corrisp. E. DE GIORGI.

ABSTRACT. — Given a separable metric locally compact space Ω , and a positive finite non-atomic measure λ on Ω , we study the integral representation on the space of measures with bounded variation Ω of the lower semicontinuous envelope of the functional

$$\mathbf{F}(u) = \int_{\Omega} f(\mathbf{x}, u) \, \mathrm{d}\lambda \qquad u \in \mathbf{L}^{1}(\Omega, \lambda, \mathbf{R}^{n})$$

with respect to the weak convergence of measures.

KEY WORDS: Relaxation; Integral representation; Measures.

RIASSUNTO. — Rappresentazione integrale e rilassamento per funzionali definiti sulle misure. Dato uno spazio metrico localmente compatto a base numerabile Ω ed una misura λ su tale spazio, positiva, finita e non atomica, si studia la rappresentazione integrale del funzionale ottenuto rilassando

$$\mathbf{F}(u) = \int_{\Omega} f(\mathbf{x}, u) \, \mathrm{d} \, \lambda \qquad u \in \mathbf{L}^{1}(\Omega, \lambda; \mathbf{R}^{n})$$

nello spazio $\mathbf{M}_n(\Omega)$ delle misure a variazione limitata su Ω , rispetto alla topologia della convergenza debole di misure.

1. INTRODUCTION

In many problems of Calculus of Variations, given a functional F defined on a topological space (X, τ), it is useful to introduce the so-called (sequentially) τ -relaxed functional \overline{F} defined by

$$F(x) = \sup \{G(x): G \text{ is sequentially } \tau - 1.s.c., G \leq F\}$$
.

where $G: X \rightarrow \overline{\mathbf{R}}$ is said sequentially τ -l.s.c. if and only if

$$G(x_{\infty}) \leq \liminf_{h \to +\infty} G(x_h)$$

for every sequence $(x_h) \subset X$ converging to $x_{\infty} \in X$ in the topology τ .

(*) Pervenuta all'Accademia il 6 agosto 1986.

When F is an integral functional, it is interesting to find an integral representation for the relaxed functional \overline{F} . General results of this type have been obtained in the literature either when Ω is a bounded open subset of \mathbf{R}^k , X is a Sobolev space $W^{1,p}(\Omega; \mathbf{R}^n)$, τ is the weak $W^{1,p}(\Omega; \mathbf{R}^n)$ topology (or the strong $L^p(\Omega; \mathbf{R}^n)$ topology) and

$$\mathbf{F}(u) = \int_{\Omega} f(x, u, \mathbf{D} u) \, \mathrm{d}x$$

(see for instance [1], [4], [9]), or when X is a space $L^{p}(\Omega, \lambda; \mathbb{R}^{n})$, τ is the weak $L^{p}(\Omega, \lambda; \mathbb{R}^{n})$ topology (or the strong $L^{p}(\Omega, \lambda; \mathbb{R}^{n})$ topology) and

$$F(u) = \int_{\Omega} f(x, u) d\lambda(x)$$

where λ is a given measure on a separable locally compact metric space Ω (see for instance [3], [5], [7]).

In this paper we study the τ -relaxation of functionals of the type (see Theorem 2.4)

$$\mathbf{F}(\boldsymbol{\mu}) = \begin{cases} \int_{\Omega}^{*} f(x, \boldsymbol{u}) \, \mathrm{d} \, \boldsymbol{\lambda}(x) & \text{if } \boldsymbol{\mu} = \boldsymbol{u} \cdot \boldsymbol{\lambda} \text{ with } \boldsymbol{u} \in \mathrm{L}^{1}(\Omega, \boldsymbol{\lambda}; \mathbf{R}^{n}) \\ + \infty & \text{otherwise} \end{cases}$$

where μ belongs to the space \mathbf{M}_n of the vector valued measures on Ω with bounded variation, τ is the weak topology of measures, $f: \Omega \times \mathbf{R}^n \to [0, +\infty]$ is a function (not necessarily measurable), and \int^* denotes the upper integral. Similar results, under measurability hypotheses on f, have been obtained with different proofs in [2], [11], [14]. The proof of Theorem 2.4, which guarantees an integral representation for the relaxed functional, is based on an approach rather different from the one followed in [2], [11], [14], and relies on an abstract integral representation theorem for functionals F (μ , B), depending on measures $\mu \in \mathbf{M}_n$ and Borel sets $\mathbf{B} \in \mathbf{B}(\Omega)$ (see Theorem 2.3).

The integral representation theorem given in this paper is the natural generalization of the theorem given in [3] concerning functionals F(u, B), depending on $u \in L^1(\Omega, \lambda; \mathbb{R}^n)$ and $B \in B(\Omega)$. Finally, in the last section of the paper we show some examples for which it is possible to compute explicitly the relaxed functional.

2. STATEMENT OF THE RESULTS.

In this section $(\Omega, \mathbf{B}, \lambda)$ will denote a measure space, where Ω is a separable metric locally compact space, **B** is the σ -algebra of the Borel subsets of Ω , and $\lambda : \mathbf{B} \to [0, +\infty)$ is a positive, non-atomic, finite measure.

For every vector measure $\mu : \mathbf{B} \to \mathbf{R}^n$ and every $\mathbf{B} \in \mathbf{B}$ the variation of μ on B is defined by

$$|\mu|(B) := \sup \left\{ \sum_{h=1}^{\infty} |\mu(B_h)| : B_h \in \mathbf{B}, \bigcup_{h=1}^{\infty} B_h \subset B, B_h \text{ pairwise disjoint} \right\},$$

We consider the following spaces:

 \mathbf{M}_n the space of all vector measures $\mu : \mathbf{B} \to \mathbf{R}^n$ with finite variation on Ω ;

L^{*p*}_{*n*} the space of all λ -measurable functions $u: \Omega \to \mathbb{R}^n$ with $\int_{\Omega} |u|^p d\lambda < < +\infty;$

 C_n^0 the space of all continuous functions $u: \Omega \to \mathbb{R}^n$ "vanishing on the boundary", that is for every $\varepsilon > 0$ there exists a compact subset K_{ε} of Ω such that $|u(x)| < \varepsilon$ for all $x \in \Omega - K_{\varepsilon}$.

The space \mathbf{M}_n can be identified with the dual space of C_n^0 by the duality (see [13], page 40)

$$\langle \mu , u \rangle_{\Omega} := \sum_{i=1}^{n} \int_{\Omega} u^{i} d \mu_{i} \qquad (u \in \mathbf{C}_{n}^{0}, \mu \in \mathbf{M}_{n}),$$

so that a sequence (μ_h) in \mathbf{M}_n is weak*-convergent to $\mu \in \mathbf{M}_n$ if and only if

$$\langle \mu_h, u \rangle_{\Omega} \rightarrow \langle \mu, u \rangle_{\Omega}$$
 for every $u \in \mathbf{C}_n^0$.

In the following, given $u \in L_n^1$, we denote by $u \cdot \lambda$ the measure of \mathbf{M}_n defined by

$$(u \cdot \lambda) (B) = \int_{B} u d \lambda$$
 for every $B \in \mathbf{B}$.

DEFINITION 2.1. We say that $\mu \in \mathbf{M}_n$ is absolutely continuous with respect to λ (and we write $\mu \ll \lambda$) if

$$|\mu|(B) = 0$$
 whenever $B \in \mathbf{B}$ and $\lambda(B) = 0$.

We say that $\mu \in \mathbf{M}_n$ is singular with respect to λ (and we write $\mu \perp \lambda$) if

$$|\mu|(\Omega - B) = 0$$
 for a suitable $B \in \mathbf{B}$ with $\lambda(B) = 0$.

It is well-known that every absolutely continuous measure $\mu \in \mathbf{M}_n$ is representable in the form $\mu = a \cdot \lambda$ for a suitable $a \in L_n^1$; moreover, the following Le-

besgue-Nykodim decomposition result for measures of \mathbf{M}_n holds (see [13] page 122).

PROPOSITION 2.2. For every $\mu \in \mathbf{M}_n$ there exist a unique function $a \in L_n^1$ and a unique measure $\mu^s \in \mathbf{M}_n$ such that

- i) $\mu = a \cdot \lambda + \mu^s$;
- ii) μ^s is singular with respect to λ .

The function a is often indicated by $\frac{d\mu}{d\lambda}$.

For proper convex functions $f : \mathbb{R}^n \to] - \infty$, $+\infty$] we define as usual the recession function of f (see [12]) by

$$f^{\infty}(s) = \lim_{t \to +\infty} \frac{f(w+t\,s)}{t}$$
 for every $s \in \mathbf{R}^n$,

where w is any point in \mathbb{R}^n such that $f(w) < +\infty$; in fact, the definition above is actually independent of the choice of w.

We are now in a position to state our integral representation result.

THEOREM 2.3. Let $\Phi : \mathbf{M}_n \times \mathbf{B} \rightarrow] - \infty$, $+\infty$] be a functional satisfying the following properties:

i) Φ is **B**-local (that is Φ (μ , B) = Φ (ν , B) whenever μ , $\nu \in \mathbf{M}_n$, B $\in \mathbf{B}$, and $|\mu - \nu|(B) = 0$;

ii) for every $\mu \in \mathbf{M}_n$ the set function $\Phi(\mu, \cdot)$ is finitely additive;

iii) the functional $\Phi(\cdot, \Omega)$ is convex and sequentially lower semicontinuous with respect to the weak*-convergence on \mathbf{M}_n ;

iv) there exists $u_0 \in L_n^1$ such that $\Phi(u_0, B) < +\infty$ for every $B \in \mathbf{B}$;

v) for every $\mu \in \mathbf{M}_n$ singular with respect to λ the function $t \to \Phi(u_0 + t \mu, \Omega) - \Phi(u_0, \Omega)$ is positively 1-homogeneous.

Then, there exists a Borel function $\phi : \Omega \times \mathbb{R}^n \rightarrow] -\infty, +\infty]$ such that a) for every $x \in \Omega$ the function $\phi(x, \cdot)$ is convex and lower semicontinuous on \mathbb{R}^n ;

b) there exist $a \in L_1^1$ and $b \ge 0$ such that $\phi(x, s) \ge -b | s | + a(x)$ for λ -a.e. $x \in \Omega$ and for all $s \in \mathbf{R}^n$;

c) the following integral representation formula holds for every $\mu \in \mathbf{M}_n$:

$$\Phi(\mu, B) - \Phi(u_0 B) = \int_{B} \phi\left(x, \frac{d\mu}{d\lambda}\right) d\lambda + \int_{B} \phi^{\infty}\left(x, \frac{d\mu^s}{d|\mu|}\right) d|\mu|$$

where $\mu = \frac{d\mu}{d\lambda} \cdot \lambda + \mu^s$ is the Lebesgue-Nykodim decomposition of μ , and for every $x \in \Omega \ \phi^{\infty}(x, \cdot)$ is the recession function of $\phi(x, \cdot)$. d) the function $\Phi^{\infty}(x, s)$ is lower semicontinuous in (x, s).

By using the integral representation theorem above, we can solve the relaxation problem which can be stated as follows. Let $f: \Omega \times \mathbb{R}^n \to [0, +\infty]$ be a given function (note that no measurability hypotheses are required); for every $\mu \in \mathbf{M}_n$ define

(2.1)
$$\mathbf{F}(\mu) = \begin{cases} \int_{\Omega}^{*} f(x, u(x)) \, \mathrm{d} \, \lambda(x) & \text{if } \mu = u \cdot \lambda \text{ with } u \in \mathbf{L}_{n}^{1} \\ +\infty & \text{otherwise,} \end{cases}$$

where \int^* denotes the upper integral. We are interested in the characterization of the greatest functional Φ on \mathbf{M}_n which is sequentially w^* -l.s.c. and less than or equal to F; in particular, we want to write Φ in the form

(2.2)
$$\Phi(\mu) = \int_{\Omega} \phi\left(x, \frac{d\mu}{d\lambda}\right) d\lambda(x) + \int_{\Omega} \phi^{\infty}\left(x, \frac{d\mu^{s}}{d|\mu|}\right) d|\mu|$$

for a suitable integrand ϕ . The following result holds.

THEOREM 2.4. Assume that the functional F defined in (2.1) is finite in at least one $u_0 \in L_n^1$. Then there exists a Borel function $\phi(x, s)$, convex and lower semicontinuous in s, such that (2.2) holds for every $\mu \in \mathbf{M}_n$. Moreover, $\phi^{\infty}(x, s)$ is lower semicontinuous in (x, s).

3. Some examples

In [10] Olech found a characterization of all integrands ϕ such that the functional

$$\Phi(u) = \int_{\Omega} \phi(x, u) \,\mathrm{d} \,\lambda$$

is sequentially $w^*-\mathbf{M}_n$ lower semicontinuous on the space L_n^1 . His result is that Φ is sequentially $w^*-\mathbf{M}_n$ lower semicontinuous if and only if there exist a sequence of functions $a_h \in L_n^1$ and a sequence of functions $b_h \in C_n^0$ such that

$$\phi(x, u) = \sup \{a_h(x) + \langle b_h(x), u \rangle \colon h \in \mathbf{N}\} \quad \forall u \in \mathbf{R}^n$$

for λ -a.e. $x \in \Omega$. By using this result, it is possible to find an explicit characterization of the integrand given by Theorem 2.4 in some interesting cases (see also for instance [6], [8]).

EXAMPLE 1. Let $f: \Omega \times \mathbb{R}^n \to \mathbb{R}$ be the function

$$f(x, s) = a(x) \mid s \mid$$

where $a: \Omega \rightarrow [0, +\infty]$ is a measurable function. Then the relaxed functional Φ of Theorem 2.4 can be represented in the form (2.2) with ϕ given by

$$\phi(x,s) = \tilde{a}(x) |s|$$

where \tilde{a} is the greatest lower semicontinuous function on Ω less than or equal to a almost everywhere on Ω . If $a \in L^1_{loc}(\Omega)$, it is easy to see that the following formula holds

(3.1)
$$\tilde{a}(x) = \liminf_{y \to x} \limsup_{\rho \to 0} \frac{\int}{\int_{B_{\rho}(y)} a(t)} dt$$
 for every $x \in \Omega$.

EXAMPLE 2. Let $a \in L_1^1$ and let $f: \Omega \times \mathbb{R}^n \to \mathbb{R}$ be the function

$$f(x, s) = a(x) \sqrt{1 + |s|^2}.$$

If we denote by \tilde{a} the function defined in (3.1), then the relaxed functiona Φ given by Theorem 2.4 can be represented in the form (2.2) with ϕ given by

$$\phi(x, s) = \begin{cases} \tilde{a}(x) \sqrt{1 + |s|^2} & \text{if } a(x) \leq \tilde{a}(x) \\ a(x) \sqrt{1 + |s|^2} & \text{if } a(x) > \tilde{a}(x) \text{ and } |s| \leq \\ & \leq \frac{\tilde{a}(x)}{\sqrt{a^2(x) - \tilde{a}^2(x)}} \\ & \tilde{a}(x) |s| + \sqrt{a^2(x) - \tilde{a}^2(x)} & \text{otherwise.} \end{cases}$$

EXAMPLE 3. Let $a: \Omega \to [0, +\infty]$ be a measurable function and let $f: \Omega \times \mathbf{R} \to \mathbf{R}$ be the function

$$f(x, s) = a(x) | s |^p$$
 (with $p > 1$).

Then, the relaxed functional Φ given by Theorem 2.4 can be represented in the form (2.2) with ϕ given by

$$\phi(x, s) = a^*(x) \mid s \mid^p$$

where a^* is the function

 $a^{*}(x) = \begin{cases} 0 & \text{if } x \in \Omega - U \\ +\infty & \text{if } x \in U \text{ and } a(x) = 0 \\ a(x) & \text{otherwise.} \end{cases}$

and U is the greatest open subset of Ω such that $a^{1/(1-p)} \in L^1_{loc}(U)$.

References

- [1] E. ACERBI and N. FUSCO (1984) Semicontinuity problems in the calculus of variations. « Arch. Rational Mech. Anal. », 86, 125-145.
- [2] G. BOUCHITTE: Paper in preparation.
- [3] G. BUTTAZZO and G. DAL MASO (1983) On Nemyckii operators and integral representation of local functionals. «Rend. Mat.», 3, 491-509.
- [4] G. BUTTAZZO and G. DAL MASO (1985) Integral representation and relaxation of local functionals. « Nonlinear Anal. », 9, 515-532.
- [5] A. FOUGERES and A. TRUFFERT (1984) △-integrands and essential infimum, Nemyckii representation of l.s.c. operators on decomposable spaces and Radon-Nikodym-Hiai representation of measure functionals. Preprint A.V.A.M.A.C. University of Perpignan, Perpignan.
- [6] A. GAVIOLI (1986) Condizioni necessarie e sufficienti per la semicontinuità inferiore di certi funzionali integrali. Preprint University of Modena, Modena.
- [7] F. HIAI (1979) Representation of additive functionals on vector valued normed Kothe spaces. «Kodai Math. J. », 2, 300-313.
- [8] P. MARCELLINI (1979) Some problems of semicontinuity. Proceedings « Recent Methods in Nonlinear Analysis », Rome 1978, Edited by E. De Giorgi and E. Magenes and U. Mosco, Pitagora, Bologna, 205-222.
- [9] P. MARCELLINI and C. SBORDONE (1980) Semicontinuity problems in the calculus of variations. «Nonlinear Anal.», 4, 241-257.
- [10] C. OLECH (1975) Existence theory in optimal control problems: the underlying ideas. Proceedings « International Conference on Differential Equations », University of Southern California 1974, Edited by H.A. Antosiewicz, Academic Press, New York 612-629.
- [11] R.T. ROCKAFELLAR (1971) Integrals which are convex functionals, II. «Pacific J. Math.», 39, 439-469.
- [12] R.T. ROCKAFELLAR (1972) Convex Analyss. Princeton University Press, Princeton.
- [13] W. RUDIN (1974) Real and Complex Analysis. Mc-Graw Hill, New York.
- [14] M. VALADIER (1979) Closedness in the weak topology of the dual pair L¹, C. «J. Math. Anal. Appl. », 69, 17-34.