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Meccanica dei continui. — A completion of A. Bressarìs work 
on axiomatic foundations of the Mach Painlevé type for various classi­
cal theories of continuous media. Part 2. Alternative completion of 
Bressarìs work, fit for extension to special relativity. Nota di ADRIANO 

MONTANARO, presentata <*) dal Corrisp. A. BRESSAN. 

ABSTRACT. — The work [3] of axiomatization of various classical theories on con­
tinuous bodies from the Mach-Painlevè point of view, is completed here in a way which 
-unlike [4]- is suitable for extension to special relativity. The main reason of this is 
the fact that gravitation can be excluded in all the theories on continuous bodies con­
sidered here. Following [1], the notion of (physical) equivalence among affine inertial 
frames, and that of (physical isotropy of these frames are introduced; it is shown that 
the isotropic inertial frames equivalent to a fixed frame of this kind are those linked to 
this frame by a (proper) Galilean transformation. As in Part 1, the Euclidean physical 
metric on inertial spaces is consequently determined, without introducing it as a primi­
tive notion. The treatment of Part 2 is referred to thermodynamic theories for conti­
nuous bodies and, as a particular case, to purely mechanic theories. In this last case, 
the primitive concepts are only the purely kinematical ones, presented in [3]. 

KEY WORDS: Axiomatization; Continuum; Thermodynamics. 

RIASSUNTO. — Un completamento del lavoro di A. Bressan sui fondamenti assio­
matici alla Mach-Painlevè per varie teorie classiche dei mezzi continui. Parte 2. Comple­
tamento alternativo del lavoro di Bressan, adatto per la estensione alla relatività speciale. 
In maniera alternativa a quanto fatto nella Parte 1 del presente lavoro (vedere [4]), si 
completa il lavoro [3] di assiomatizzazione alla Mach-Painlevè di varie teorie classiche di 
sistemi continui; ivi, tra l'altro, riguardo alla cinematica classica si arriva a definire i ri­
ferimenti inerziali affini. 

Diversamente dalla Parte 1, qui non viene fatto uso delle forze gravitazionali e, 
seguendo [1], si introducono la nozione di equivalenza (fisica) tra riferimenti inerziali 
affini e quella di isotropia (fisica) di tali riferimenti; si dimostra che i riferimenti iner­
ziali isotropi equivalenti ad un fissato tale riferimento, sono tutti e soli quelli legati a 
questo da una trasformazione Galileiana (propria); la metrica Euclidea fisica sugli spazi 
inerziali risulta quindi determinata, senza bisogno di introdurla come nozione primitiva. 

La trattazione si riferisce ad una generica teoria termodinamica per sistemi con­
tinui o, come caso particolare, anche puramente meccanica; in questo ultimo caso i con­
cetti primitivi assunti sono solo quelli puramente cinematici presentati in [3]. 

Tutte le teorie considerate nella presente parte possono escludere la gravitazione 
in quanto essa non viene mai usata; per questo, diversamente dalla Parte 1, la Parte 2 
è adatta alla estensione alla relatività ristretta. 

(*) Nella seduta del 20 giugno 1986. 
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N . 4 . P H Y S I C A L E Q U I V A L E N C E B E T W E E N A F F I N E I N E R T I A L F R A M E S I N ^ " r s 0 -

GALILEAN PRINCIPLE OF RELATIVITY EXPRESSED BY THEM. PHYSICAL H O M O ­

GENEITY AND ISOTROPY OF SPACE-TIME. ISOTROPIC INERTIAL FRAMES AND 

GALILEAN THEOREM OF RELATIVITY EXPRESSED BY THEM. 

The whole of Part 2 refers to any theory 5 " r l 0 (r —0,1). By crossing out 
all references in them to temperature and related notions, one obtains the analo­
gous considerations for ^~rQ0 (r = 0 , 1). 

By Th. 5.3 (a) in [3], if 9 == (xa) and ty = {za)e CAIF <*> -see Def.s 5.1-2 
and below Remark in N. 5 of [3] - , then the transformation <\> o 9-1 is of the 
type 

(4.1) z = A x — b x0 — c , z0 = T #0 — co 

for some (A , b , c , T , c0) e Lin# x R3 X R3 X R # X R ,(2) 

where 

(4.2) Lin# = { 3 x 3 real matrices A | det A ^ 0} . 

As in [4], if (4.1) represents ^ ° <p_1, then it is set 

(4-3) + = ?W 

Following [1] the notion of physical equivalence is introduced. 

DEF. 4.1. Assume that 9 and ty are in CAIF; they are said to be {physically) 
equivalent if the following condition holds : for every body &y p is the ^-representa­
tion of a C2 process that & can undergo in isolation - briefly a P I P ^ - if and only 
if p is the ^-representation of a P IP^ - see Def. 2.4 in [4] -

Ax. 4.1. (Galilean principle of relativity for CAIF). Each 9 e CAIF is 
physically equivalent to every other tye CAIF for which (4.1,3) hold with A = l 
and T = 1. 

Def. 4.1 and Ax. 4.1 imply the following: 

Th. 4.1. If p is the (^-representation of a PIP^, then for every (v , s ,u)e 
G R3 x R3 X R, {x=f(y,t + u) + vt + s , 6 = Ç (y , * + u)\Xtt)er.WxK-see 
(2.3) in [4] - is the ^-representation of a PIP^. 

Again from [1]: 

(1) Greek [Latin] indices are meant to run from 0 [1] to 3. 
(2) RÎ = {x e R I x > 0}. 
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DEF. 4.2. Space-time is said to be 

(a) spatially (physically) homogeneous if each 9 e CAI F is physically equi­
valent to every translate of its (i.e. 9 W is physically equivalent to 9 V c e R3); 

(b) {physically) homogeneous with respect to time if any two arbitrary affine 
inertial frames which differ only by the time origin are physically equivalent ; 

(c) physically homogeneous if it is homogeneous both spatially and with 
respect to time. 

DEF. 4.3. For 9 6 CAIF, QeOrth+<3> and 9 Q = 9Q
1°o° (e CAIF, see 

(4.1-3)), 9 Q is called the Q-rotate of frame 9. 

DEF. 4.4. 9 6 CAIF is said to be physically isotropic {with respect to its 
origin) if 9 Q is physically equivalent to 9, VQ e Orth+. 

Ax. 4.2. (Existence). There exists some 9 6 CIIF. 

The class of these frames will be denoted by CIIF {classical isotropic inertial 
rames). Again from [1]: 

DEF. 4.5. Space-time is said to be 

(a) physically isotropic at the event-point ê if there exists a 9 € CIIF 
for which 9 {ê) = (0 , 0 , 0 , 0); 

(b) physically isotropic if it is physically isotropic at each event-point. 

Def.s 4.4-5 and Ax.s 4.1-2 imply the following theorem. 

Th. 4.2 (a) (Galilean principle of relativity expressed for CIIF). If 

9 € CIIF and ty o 9--1 is a {proper) Galilean transformation (4) then ty {e CIIF) 
is physically equivalent to 9. 

((3) Sptyce-time is physically homogeneous and isotropic. 

Now, differently from [1] where an axiom more powerful than Ax. 4.2 
is stated-see [1, Ax. 28.1, p. 177] - , it remains to prove the converse of Th. 4.2 
(a) — i.e. Th. 5.1 below - , which cannot be deduced without enunciating 
next Ax.s 5.1-2. 

Next theorem is the version of Th. 4.1 for isotropic inertial frames. 

Th. 4.3. If ye CAIF, 9 is physically isotropic <=> any of conditions (a) and 
(3) below holds. 

(3) As in [4] assume that Orth = {A e Lin# ] AA* = l}-see (4.2)-, Lin* = {A e 
e Lin# I det A > 0}. Orth+ = {A e Lin* | AA* = 1}, where A* denotes the transpose 
of A, AA* is the usual product between matrices, and 1 is the identity matrix. 

(4) The transformation <]> ° 9 - 1 expressed by (4.1) is said to be (proper) Galilean 
if AeOr th+ and T = 1. 

4. - RENDICONTI 1987, vol. LXXXI, fase. 1-3. 
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(a) [(p)] For each body &ffor each PIP^ - see in Def. 4.1 - , whose ^repre­
sentation is {x =f (y y t) , G = Ç (y , t)}(y,t)ev*(&)xR> and for eacn R € Orth+ 
[ ( R , » , s , « ) e Orth+ x R3 X R3 X R], the {x = R / ( y , t), 6 = Ç (y , 0} . • • 
[{x = R / (y , t + #) + t; t + * , 6 = £ (^ , * + u)} . . .] , is the (^-representation of 
a PIP <5>. 

N. 5. PROPERTIES OF CO-ORDINATE TRANSFORMATIONS IMPLIED BY THE PHYSICAL 

EQUIVALENCE OF TWO ISOTROPIC INERTIAL FRAMES 

Assume that (i) p = {x =f (y , t)f 6 = Ç (y , t)}(yt)ey * ( ^ x R and (ii) (A , a) € 
€ Lin# X RJ. I set 

(5- l) PA,« = {* = A / (y , a *) , 6 = Ç (y , a *} (3, f, )eY V ) x R 

LEMMA 5.1. Assume that (i) 9 and <j/ #r£ physically equivalent CAIFs, 

{classical affine inertial frames), and (ii) ty = ?A
T

6
C

 c /of som^ (A , 6 , c , T , c0) e 

€ Lin# X R3 X R3 X RJ X R - see (4.1-3) - . 77ié?rc for each body &% if p is 

the ^-representation of a process in PIP^ then both p _x and p _x are the 

(^-representations of a process in PIP^. 

Proof. By Ax. 4.1 it is not restrictive to assume that 9 and J> are mutually 
joint and with the same origin, i.e. that <\>. cp-] is 

(5.2) z — A x , zQ = T #0 with (A. ,r)e Lin# X R+ , - see (4.1-2) - . 

In addition let /> = < / , £ > be the 9-representation of a P IP^ - see 
(2.3) and D,ef. 2.4 in [4] - , say P ; then 

(5.3) {z = A / (y , T - 1 *Q) , 6 = K (y , x"1 ^o)]}(,)2o)eYV)xR 

is the ^-representtion of P (by (5.2)). The analogue for 9 = (#a) of P's re­
presentation (5.3) in 4» = (#a) is 

(5.4) pAT-i = {x = A / (y , T- 1 O , 8 - C (y , T- 1 xQ)} . . . (see (5.1). 

As 9 and v|> are physically equivalent, / > A T - I is the 9-representation of a 
P I P , . q.e.d. 

(5) The => part follows from Def.s 4.1,4 and Ax. 4.1. To prove the <= part, 
choose Q e Orth+ and consider (i) 9 Q = (xa)-see Def. 4.3-, (ii) a body & and (iii) a PIPjf 
whose 9-representation is < f , Ç > - s e e (2.3) in [4]-. I want to show that 9 is isotropic. 
By (a), [x = Q*f(y , t), 8 = Ç (y , z)] . . . is the 9-representation of a PIP^. Hence 
[*~ / ( : y ,*0), 8 = Ç (y , iQ)} . . . (x0 = £), is the 9Q-representation of a PIP^ . On 
the other hand, if {*0= g (y , xQ)f 8 = Ç (y., â p } . . . is the 9 Q representation of a PIP.#, 
then {x = Q* g (y , t), 8 = Ç (y , t)} . . . is its 9-represetaion, and by (a) {x = g (y , t) 
8 = Ç (y , t)} . . . is the 9-representation of a P IP^ . q.e.d. 
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Consider a process P for a body & which (i) is a rest process up to instant 
0, and in which (ii) the acceleration field a is ^ 0 after 0. Consider the frame 
91

T°0° , for 0 < T ^ 1 - see (4.3) - and assume that it is physically equivalent 
to 9. Let 3ft' 5 $t be the body which is isolated when ^ undergoes P, and 
let P ' e PIP^, be the process which coincides with P on f - see Ax. 6.2 in [3] 
- ; let p be the 9-representation of P'. Then, for £ < 0 P' coincides with the 
process P' whose 9-representation is plx (which by Lemma 5.1 is physically 
possible); and after 0 we have O ^ a ^ a , where a is the acceleration field in 
P'. This justifies the following 

Ax. 5.1. For T ^ £ 1 the frame 91
T°0° is not physically equivalent to 9. 

Remark. Ax. 5.1 can be derived from the deterministic Ax. 5.1* below, 
existence Ax. 5 .1 # * below, and Lemma 5.1 ((3) (hence from Ax. 6.2 in [3]). 

Ax. 5 .1 # (Principle of determinism in ZFr s0). Assume that (i) 9 = (xa)e 
e CAIF, Ce R , (ii) & => B^, is a body, and (iii) P is a process for &\ then, there 
exists at most one process P^ that 88 can undergo in isolation and which coincides 
with P up to instant Ç. 

Ax. 5.1 * # (Existence). Given a body &, ye CAIF, and £e R, there exists 
a process P^ e PP^ which (i) fails to be a y-rest process, but (ii) coincides with such 
a process up to £. 

Now let ^ be a. body, 9 e CAIF and assume that for T > 0 the frame 9^0° 
is physically equivalent to 9. By Ax. 5 . 1 # # there exists a PP^, say P0, satisfying 
conditions (i) and (ii). Let £%' ;2 $ be the body which is isolated when £8 
undergoes P0, let P^ e PIP^, be the process which coincides with P0 on ^ 
— see Ax. 6.2 in [3] —, and let p be its 9-representation. By Lemma 5.1, 
plz is the 9-representation of a PIP^ , say PQT ; P^T and P^ are processes 
which coincide up to 0, and, if T ^ 1, they do not coincide after 0, contradi­
cting Ax. 5.1# . Hence T = 1, i.e. Ax. 5.1 follows from Ax.s 5.1* and 5.1**. 

Below, the existence of a suitable body which is capable of exactly one 
rest process, up to constant translations and rotations, is postulated. 

Ax. 5.2 (Existence). Let 9 be in CUF. For some body £% (i) some <p-rest 
process P0 is a PIP# ; furthermore (ii) if {* = / ( j > ) , 0 = Ç GV)}J«=Y*G?) ^ the 9-
representation of P0, then each other tp-rest process that includes the same tempe­
rature distribution and can be undergone by & in isolation, has a <p-repretentation 
of the type {x=^Qf(y) + s, Q=£ (y)}y6Y*m for some (Q , s)e Orth+ X R3. 

Th. 5.1. Assume that 9 and ^ are physically equivalent CIIFs. Then 
the transformation ^ o 9-1 is (proper) Galilean. 

Indeed by Ax. 4.1 it is not restrictive to suppose that ^ o 9-1 is 

(5.5) z = A x , z0 = T x0 for some (A , T) e Lin# x R+ - see (4.1,2) - . 
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Choose & and P0 as in Ax. 5.2 and let {x=f(y) , 6 = Ç (y)^yeY*(^) ke 

the 9-representation of PQ; as t]> and 9 are physically equivalent, {z =f (y) , 6 — 
= K (y)} • • • is the ^-representation of another PIP^ , say P0, as in Ax. 5.2 (i); 
since P0 has the 9-representation {x = A - 1 / (y) , 6 = Ç (y)} . . . , by Ax. 5.2 (ii) 
A_x and A are in Orth+. Consider the A-rotate <pA of cp -see Def.s 4.3,4 - ; as 
ty and 9' = cpA are physically equivalent and ^ = (cp')1^0» ^y Ax. 5.1 T = 1, 
i.e. ty ° 9_ 1 is (proper) Galilean. q.e.d. 

Th. 4.2(a) and Th. 5.1 imply the following corollary: 

COR. 5.1. cp and ty are physically equivalent CIIFs if and only if the trans­
formation ty o çp-1 is [proper) Galilean. 

At this point the physical Euclidean metric can be introduced on each 
inertia! space S 9 and on each cp-Instf

 (6) exactly as this is made at the end of N. 3 
in [4] below the proof of Th. 3.3, except that one only has to replace CGIIF 
with C U F and " gravitationally " with " physically *\ 

Th. 5.2. Assume that cp = (xa)e CUF and ty =~(*a)e CAIF. Then <\>e 
e CUF if and only if there exist T , S > 0 and (Q , b , c , c0) e OrthF X R3 X R3 X 
X R for which ty o cp-1 is 

(5.6) z = e S Q x — b x0 — c , z0 = r x0 — c0 (e = ± 1) . • 

Proof Assume <p , tye CUF; by Ax. 4.1, the isotropy of 9 and <J;, Th. 4.2 
(a), and the polar decomposition theorem, one can assume that ty o çp-1 is 

(5.7) z = e Ax, z0 = r x0, 

where A is a diagonal matrix with arr = 8r > 0 (r = 1 , 2 , 3), T > 0 , and 
e=±l - see (4.1) - . Let @ and P0 be as in Ax. 5.2; if {x=f(y) , 0 = 
= Ç (y)}yer*(&>) is the 9-representation of P0, then its ^-representation is {z — 
= e A / (y) , 6 =. £ (y)} . . . Choose an R in Orth+ that carries the # raxis onto 
the sa-axis. As ^ G CUF, by Th. 4.3 {z = e R A / (y), 6 = Ç (y)} . . . , is the 
^-representation of a PIP^ P0- Its 9-representation, by (5.7), is {x = 
= A - * R A / ( y ) , 6 = ^ ) } . . . As ^ e C I I F , again by Th. 4.3, the {x = 
= j r ( y ) » ô = Ç(y)};. . . 'with 

(5.8) ^ W - R ^ A - ^ R A / W , 

is the 9-representation of a P 0 e PIP^. Now choose y0,y1,y2€ Y* (^) s u c r i 

that, for xi =f(yi) , i = 1 , 2 , it results that (i) xL — x 0 is parallel to the xr 

(6) Up denotes the set of those PWIMPs that have zero 9-velocity-see [3, Def. 3.5] 
and [2, p . 173]-; furthermore, for f eR , <p-Inst« = D {^eEP | 90 (<̂ ) = t} is said to be 
the (p-instant of absciss t-see [2, (5.7)]-, where EP is the set of event points, i.e. space-
time. 
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axis (/ = 1 , 2), and (ii) R (Xl — x0) = x2—xQ. Then <7> 

ì g b i ) - j r (*>) I = I R-1 A-1 R A (*, -Xo) \ = ! R-1 A-1 R 8X (*x - * 0 ) | = 

= 8, | R-1 A-1 (*a -xo) | - 8X V 1 1 R-1 (*2 —xo) | = 8X K-11 / W - / U ) ! 

- see (5.8) and (i), (ii) above - . Therefore S ^ S2 implies that the motions in 
the processes P0 and P0 are not congruent, contradicting Ax. 5.2. Hence Sx = 
=^8 2 ; and by analogous reasons, S 2 = § 3 . 

Conversely assume now (i) epe CUF, ^ e CAIF, and (ii) (5.6) holds for 
some T , S > 0 and Q e Orth+ (having assumed, as usual, 6 = c — 0 , c0 = 0). 
To prove that ^ is isotropic, choose a body & and a P G PIP^ ^-represented 
by {z =f (y , z0) , 6 = Ç (y , #0)}(jrf*0)eYV) x R • BY (5-6) i t s 9 - r e P r e s e n t a t i o n i s 

{x = e8~1 Q * / (y , T x0), 6 = Ç (y , T x0)} . . . As cp is isotropic, by Th. 4.3, 
for each R e Orth+ {* = e R S"1 Q* / (y , T *0) , 6 = Ç (jf, r x0} . . . is the 
9-representation of a PIP^, whose ^-representation is ( z ^ Q R Q * / ^ , ^ ) , 
6 = Ç (y , £0)} . . . Chosing R - Q # R Q with R e Orth+, it follows that 
{z = R / (y , #0) , 6 = Ç ( y , #0)} . . . is the ^-representation of a PIP#. By 
arbitrariness of ^ , P , R , and Def. 4.4, Th. 4.3, one conclude that i|) is iso­
tropic, q.e.d. 

N. 6. SOME CONNECTIONS BETWEEN PARTS 1 AND 2 

Within the theory developed in [4] one can define the notions of gravita­
tional homogeneity and gravitational isotropy of space-time in a way similar 
to that used here, in N. 4, where physical homogeneity and physical isotropy 
are defined. One only has to substitute " C A I F " and " physically " with 
" CGIIF " and " gravitationally " respectively in the Def.s 4.2 (a)-(c) and the 
Def. 4.5 within [4]. Then Th. 3.3 (8) and Ax. 3.3 in [4], which are the analo­
gues of Th. 4.2 (a) and Ax. 4.2 here respectively, imply that space-time is gra­
vitationally homogeneous and isotropic, which assertion is the analogue of 
Th. 4.2 ((3) here. Referring only to theories of the type ^~ijS>o {s = 0 , 1), by 
Th. 5.2 and its analogue Th. 3.3 (a) in [4], it follows that 

(a) assume that there exists a 9 in CIIF Pi CGIIF and that fye CAIF; 
then <p G CUF if and only if <\> e CGIIF and ̂  and 9 have the same orientation. 

It is trivial to prove that CIIF c CGIIF. By Ax. 4.2 there is some 9 
m CIIF n C G I I F , so that by (a): 

(P) if 9 and ^ are gravitationally equivalent, then they are also physically 
equivalent if and only if they have the same orientation. 

Lastly observe that the deterministic proposition connecting of Ax. 4.1 turns 
out to be a theorem within the theory developed in [4] - see [4, Th. 3.3 (y)] - . 

(7) I x — x J is the Euclidean metric. 
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