Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Vladimir A. Kondratiev, Olga A. Oleinik

Estimates near the boundary for second order derivatives of solutions of the Dirichlet problem for the biharmonic equation

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 80 (1986), n.7-12, p. 525-529.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1986_8_80_7-12_525_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Abstract

Analisi matematica. - Estimates near the boundary for second order derivatives of solutions of the Dirichlet problem for the biharmonic equation. Nota (*) di Vladimir A. Kondratiev e Olga A. Oleinik, presentata dal Socio G. Fichera.

Riassunto. - Per ogni soluzione della (1) nel dominio limitato Ω, appartenente a $H_{0}^{2}(\Omega)$ e soddisfacente le condizioni (2), si dimostra la maggiorazione (5), valida nell'intorno di ogni punto x^{0} del contorno; si consente a $\partial \Omega$ di essere singolare in x^{0}.

This paper gives an answer to a question posed by Prof. G. Fichera in May 1985 at the Conference dedicated to Prof. M. Picone and Prof. L. Tonelli, organized by the Accademia Nazionale dei Lincei.

We consider a weak solution of the Dirichlet problem for the equation

$$
\begin{equation*}
\Delta \Delta u=\sum_{j=1}^{2} \frac{\partial f_{j}}{\partial x_{j}} \tag{1}
\end{equation*}
$$

in an arbitrary bounded domain Ω in R^{2}, where

$$
\Delta \equiv \frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x^{2}}, f_{j} \in \mathrm{~L}^{p}(\Omega), p>2,
$$

with the boundary conditions

$$
\begin{equation*}
\left.u\right|_{\partial \Omega}=0,\left.\quad \operatorname{grad} u\right|_{\partial \Omega}=0 \tag{2}
\end{equation*}
$$

$\partial \Omega$ is the boundary of Ω. We study weak solutions of problem (1), (2) which belong to the space $\mathrm{H}_{0}^{2}(\Omega)$. The space $\mathrm{H}_{0}^{2}(\Omega)$ is defined as a completion of $\mathrm{C}_{0}^{\infty}(\Omega)$ with respect to the norm

$$
\|u\|_{2} \equiv\left(\int_{\Omega} \sum_{|\alpha| \leq 2}\left|\mathscr{D}^{\alpha} u\right|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}
$$

where

$$
\alpha=\left(\alpha_{1}, \alpha_{2}\right),|\alpha|=\alpha_{1}+\alpha_{2}, \mathscr{D}^{\alpha} \equiv \frac{\partial|\alpha|}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{i}}}
$$

$\mathrm{C}_{0}^{\infty}(\Omega)$ is the class of infinitely differentiable functions with compact support in Ω.
(*) Pervenuta all'Accademia l'11 agosto 1986.

In papers [1], [2] best possible estimates for the modulus of a weak solution of (1), (2) and its first derivatives near the boundary are given, the precise Hölder space $\mathrm{C}^{1+\delta}(\Omega)$ is found which contains weak solutions of (1), (2) under some conditions on the geometry of $\partial \Omega$, (see also [3], [4]). Estimates for the derivatives of any order near a singular point of the boundary $\partial \Omega$ for solutions of the elasticity system are given in [5]. Estimates of the same kind are valid for solutions of the biharmonic equation. In particular, if the origin $0 \in \partial \Omega$ and the intersection of Ω with the circle $|x|=t$ is not empty for $t \leq \mathrm{T}$, $\mathrm{T}=$ const $>0, f_{j} \in \mathrm{~L}^{p}, p>2$, then for a weak solution of problem (1), (2) the estimates

$$
\begin{equation*}
|u(x)| \leq \mathrm{C}_{1}|x|^{3 / 2},\left|\frac{\partial u(x)}{\partial x_{j}}\right| \leq \mathrm{C}_{2}|x|^{1 / 2} \quad, \quad j=1,2, \quad|x| \leq \frac{\mathrm{T}}{2} \tag{3}
\end{equation*}
$$

are valid, $\mathrm{C}_{1}, \mathrm{C}_{2}=$ const. In (3) one cannot take $\frac{3}{2}+\varepsilon(\varepsilon=$ const $>0)$ instead of $\frac{3}{2}$ in the first inequality, and $\frac{1}{2}+\varepsilon$ instead of $\frac{1}{2}$ in the second inequality. In this sense estimates (3) are best possible (see [1], [2]) ${ }^{(1)}$.

Theorem. Let 0 be the origin, $0 \in \partial \Omega$. Suppose that the following conditions are satisfied:

1) the intersection of $\partial \Omega$ with the circle $|x|=t$ for $t \leq \mathrm{T}, \mathrm{T} \doteq$ const $>$ >0, is not empty;
2) there exists $\beta=$ const $>0, \beta<1$, such that for any $x^{0} \in \partial \Omega$ and $\left|x^{0}\right|<\frac{1}{2} \mathrm{~T}, x^{0} \neq 0$, the intersection of $\partial \Omega$ with the disk $\left|x-x^{0}\right|<\beta\left|x^{0}\right|$ contains a curve $\mathrm{S}_{x^{0}}$ whose end-points belong to the boundary of the disk, $x^{0} \in \mathrm{~S}_{\boldsymbol{x}^{0}}$, the curve $\mathrm{S}_{x^{0}}$ has the form

$$
x_{1}=\varphi_{2}\left(x_{2}\right) \quad \text { or } \quad x_{2}=\varphi_{1}\left(x_{1}\right),
$$

where
(4) $\left|\varphi_{j}^{\prime}\left(x_{j}\right)\right| \leq \mathrm{C}_{3},\left|\varphi_{j}^{\prime \prime}\left(x_{j}\right)\right| \leq \mathrm{C}_{4}\left|x^{0}\right|^{-1},\left|\varphi_{j}^{\prime \prime \prime}\left(x_{j}\right)\right| \leq \mathrm{C}_{5}\left|x^{0}\right|^{-2}, j=1,2$,
and constants $\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}$ do not depend on x^{0}; either two domains, bounded by $\mathrm{S}_{x^{0}}$ and a part of the circle $\left|x-x^{0}\right|=\beta\left|x^{0}\right|$, belong to Ω, or one of them belongs to Ω and $\mathrm{S}_{x}{ }^{0}$ belongs to the boundary of $\mathrm{R}^{2} \backslash \bar{\Omega}$. Then there exists a constant $\mathrm{C}_{6}>0$ which does not depend on u, f_{1}, f_{2} and such that

$$
\begin{equation*}
\left|\frac{\partial^{2} u(x)}{\partial x_{i} \partial x_{j}}\right| \leq \mathrm{C}_{6}|x|^{-1 / 2}\left(\cdot \int_{\Omega} \sum_{j=1}^{2}\left|f_{j}\right|^{p} \mathrm{~d} x\right)^{1 / p}, i, j=1,2, \tag{5}
\end{equation*}
$$

(1) For the second inequality (3) we need an additional assumption: the intersection of $\partial \Omega$ and $\left|x-x^{0}\right|=\rho$ is not empty for $\rho<\left|x^{0}\right| / 2$ and for any x^{0} with $\left|x^{0}\right|<\mathrm{T} / 2$.
for $|x|<\frac{1}{4} \mathrm{~T}, x \in \Omega, x \neq 0$. Estimate (5) is best possible.
Proof. In [1], [2] it is proved that the estimate

$$
\begin{equation*}
|u(x)| \leq \mathrm{C}_{7}|x|^{3 / 2}\left(\int_{\Omega} \sum_{=1}\left|f_{j}\right|^{p} \mathrm{~d} x\right)^{1 / p}, p>1,|x| \leq \frac{1}{2} \mathrm{~T} \tag{6}
\end{equation*}
$$

is valid under the first condition of this theorem, where the constant C_{7} does not depend on f_{1}, f_{2}.

Suppose that $y \in \Omega$ and the disk $\mathrm{K}_{y}=\left\{x:|x-y|<\frac{1}{4} \beta|y|\right\}$ does not intersect $\partial \Omega$. Let us introduce new independent variables

$$
x^{\prime}=\frac{x}{|y|}
$$

In these variables equation (1) has the form

$$
\Delta \Delta u=|y|^{3} \sum_{j=1}^{2} \frac{\partial f_{j}}{\partial x_{j}^{\prime}}
$$

in the disk

$$
\mathrm{K}_{y}^{\prime}=\left\{x^{\prime}:\left|x^{\prime}-y^{\prime}\right|<\frac{1}{4} \beta\right\}, y^{\prime}=\frac{y}{|y|}
$$

It follows from the interior estimates for elliptic equations [6] and the imbedding theorems [7] that

$$
\begin{aligned}
& \left|\frac{\partial^{2} u\left(y^{\prime}\right)}{\partial x^{\prime} \partial x_{j}^{\prime}}\right| \leq \mathrm{C}_{8}\left(\int_{\left|x^{\prime}-y^{\prime}\right|<1 / 8 \beta} \sum_{|\alpha| \leq 3}\left|\mathscr{D}^{\alpha} u\right|^{p} \mathrm{~d} x^{\prime}\right)^{1 / p} \leq \\
& \leq \mathrm{C}_{9}\left[|y|^{3}\left(\int_{\mathrm{K}_{y}^{\prime}} \sum_{j=1}^{2}\left|f_{j}\right|^{p} \mathrm{~d} x\right)^{1 / p}+\left(\int_{\mathrm{K}_{y}^{\prime}}|u|^{p} \mathrm{~d} x^{\prime}\right)^{1 / p}\right]
\end{aligned}
$$

and therefore in variables x we have
(7) $\left|\frac{\partial^{2} u(y)}{\partial x_{i} \partial x_{j}}\right| \leq \mathrm{C}_{9}\left[|y|^{1-(2 / p)}\left(\int_{\mathrm{K}_{y}} \sum_{j=1}^{2}\left|f_{j}\right| p \mathrm{~d} x\right)^{1 ; p}+|y|^{-2-(2 / p)}\left(\int_{\mathrm{K}_{y}}|u|^{p \mathrm{~d} x}\right)^{1 / p}\right]$.

Using estimate (6) and the condition $1-\frac{2}{p}>0$ we get from (7) that

$$
\left.\frac{\partial^{2} u(y)}{\partial x_{i} \partial x_{j}}\left|\leq \mathrm{C}_{10}\right| y\right|^{-1 / 2}\left(\int_{\Omega} \sum_{j=1}^{2}\left|f_{j}\right|^{p} \mathrm{~d} x\right)^{1 / p}
$$

Suppose now that $y \in \Omega$, but the disk $\mathrm{K}_{y}=\left\{x:|x-y| \leq \frac{\beta}{4}|y|\right\}$ has a non-empty intersection with $\partial \Omega$. Let y_{*} be a point of $\partial \Omega$ and $\left|y-y_{*}\right|=$ $=\rho(y, \partial \Omega)$, where $\rho(y, \mathrm{~A})$ is the distance between y and A. Then the disk $\mathrm{B}_{y_{*}}=\left\{x:\left|x-y_{*}\right|<\beta\left|y_{*}\right|\right\}$ contains y and, according to condition 2) of the Theorem, $\mathrm{S}_{y_{*}}$ satisfies conditions (4).

We introduce new variables $x^{\prime}=\frac{x}{\left|y_{*}\right|}$. In these variables equation (1) has the form

$$
\Delta \Delta u=\left|y_{*}\right|^{3} \sum_{j=1}^{2} \frac{\partial f_{j}}{\partial x_{j}^{\prime}}
$$

in the disk $\left|x^{\prime}-y_{*}^{\prime}\right|<\beta, x \in \Omega$. The curve $\mathrm{S}_{y_{*}}$ in the new variables is given by the equations

$$
x_{1}^{\prime}\left|y_{*}\right|=\varphi_{2}\left(x_{2}^{\prime}\left|y_{*}\right|\right) \quad \text { or } \quad x_{2}^{\prime}\left|y_{*}\right|=\varphi_{1}\left(x_{1}^{\prime}\left|y_{*}\right|\right) .
$$

It is easy to see that according to (4) $S_{y_{*}}$, which we denote by $S_{y_{*}}^{\prime}$ in the new variables, belongs to class C^{3} and $\mathrm{S}_{y_{*}}^{\prime}$ is defined by a function who se norm in C^{3} is bounded uniformly with respect to y_{*}. We denote by G_{β} the domain, bounded by the circle $\left|x^{\prime}-y_{*}^{\prime}\right|=\beta$ and $\mathrm{S}_{y_{*}}^{\prime}$, and containing y^{\prime}. It is known (see [8], [9]) that for $p>2$

$$
\left(\int_{\mathrm{G}_{\beta / 2}} \sum_{|\alpha| \leq 3}\left|\mathscr{D}^{\alpha} u\right|^{p} \mathrm{~d} x^{\prime}\right)^{1 / p} \leq \mathrm{C}_{11}\left[\left|y_{*}\right|^{3}\left(\int_{\mathrm{G}_{\beta}} \sum_{j=1}^{2}\left|f_{j}\right|^{p} \mathrm{~d} x^{\prime}\right)^{1 / p}+\left(\int_{\mathrm{G}_{\beta}}|u|^{p} \mathrm{~d} x^{\prime}\right)^{1 / p}\right]
$$

where the constant C_{11} does not depend on y_{*}^{\prime}. It follows from the imbedding theorems that for $x^{\prime} \in \mathrm{G}_{\beta / 2}$

$$
\begin{equation*}
\left|\frac{\partial^{2} u\left(x^{\prime}\right)}{\partial x_{i}^{\prime} \partial x_{j}^{\prime}}\right| \leq \mathrm{C}_{12}\left[\left|y_{*}\right|^{3}\left(\int_{\mathrm{G}_{\beta}} \sum_{j=1}^{2}\left|f_{j}\right|^{p} \mathrm{~d} x^{\prime}\right)^{1 / p}+\left(\int_{\mathrm{G}_{\beta}}|u|^{p} \mathrm{~d}\right)^{1 / p}\right] \tag{8}
\end{equation*}
$$

We write the inequality (8) in the variables x and get

$$
\begin{gathered}
\left|\frac{\partial^{2} u(x)}{\partial x_{i} \partial x_{j}}\right| \leq \mathrm{C}_{12}\left[\left|y_{*}\right|^{1-(2 / p)}\left(\int_{\Omega} \sum_{j=1}^{2}\left|f_{j}\right|^{p} \mathrm{~d} x\right)^{1 / p}+\left(\int_{\Omega}|u|^{p} \mathrm{~d} x\right)^{1 / p}\right] \\
x \in\left\{x:\left|x-y_{*}\right|<\frac{\beta|y|}{2}\right\} .
\end{gathered}
$$

Using (6) to estimate the last integral, we obtain

$$
\begin{equation*}
\left|\frac{\partial^{2} u(x)}{\partial x_{i \xi} \partial x_{j}}\right| \leq \mathrm{C}_{13}\left|y_{*}\right|^{-1 / 2}\left(\int_{\Omega} \sum_{j=1}^{2}\left|f_{j}\right|^{p} \mathrm{~d} x\right)^{1 / p}, p>2, \quad i, j=1,2 \tag{9}
\end{equation*}
$$

Since $\left|y-y_{*}\right|<\frac{\beta|y|}{4},|y|<\frac{4}{3}\left|y_{*}\right|$, we have from (9)

$$
\left|\frac{\partial^{2} u(y)}{\partial x_{i} \partial x_{j}}\right| \leq \mathrm{C}_{14}|y|^{-1 / 2}\left(\int_{\Omega_{j=1}^{2}}^{2}\left|f_{j}\right|^{p} \mathrm{~d} x\right)^{1 / p}
$$

This means that the estimate (5) is valid. The theorem is proved.

References

[1] Kondratiev V.A. and Oleinik O.A. - Best possible estimates in Hölder spaces for weak solutions of the biharmonic equation, the Nazier - Stokes system, and the Karman system in non-smooth two-dimersional domains. "Vestnik Mosc. Univ.", ser. 1, «Mat., Mech.», 6, 22-39, 1983.
[2] Kondratiev V.A., Kopacek J., Lekveishvili D.M. and Oleinik O.A. - Best possible estimates in Hölder spaces and the precise Saint-Venant principle for solutions of the biharmonic equation. «Trudy Mat. Institute im. Steklov», 166, 91-106, 1984.
[3] Kondratiev V.A. and Oleinik O.A. - On the smoothness of weak solutions of the Dirichlet problem for the biharmonic equation in domains with non-regular boundary. In: Nonlinear partial differential equations and their applications. College de France seminar, 7, 180-199, 1986.
[4] Oleinik O.A. - On some mathematical problems of elasticity. Convegno Celebrativo del Centenario della nascita di Mauro Picone e di Loonida Tonelli, 6-9 maggio 1985. «Accad. Naz. dei Lincei», Roma, 259.273, 1986.
[5] Kopacek J. and Oleinik O.A. - On the behaviour of solutions of the elasticity system in a neighbourhood of irregular points of the boundary and at the infinity. «Transactions of the Moscow Math. Society", 43, 1981.
[6] Agmon S., Douglis A. and Nirenberg L. - Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. «I. Comm. Pure Appl. Math.», 12, 623-727, 1959.
[7] Sobolev S.L. - Some applications of functional analysis to mathematical physics. Leningrad Univers, 1950.
[8] Morrey C.B. - Multiple integrals in the calculus of variations. Springer Verlag, 130, 1966.
[9] Mazya V.G. and Shaposhnikova T.O. - On requirements for the boundary in Lp-theory of elliptic boundary value problems, «Dokl. A.N. USSR», 251 (5), 1055-1058, 1980.

