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Logica matematica. — Consequences of compactness properties for 

abstract logics. N o t a di P A O L O L I P P A R I N I , presentata (•) dal Socio 

G. ZAPPA. 

RIASSUNTO. — Si determinano alcune restrizioni sulle possibili cardinalità dei mo­
delli di teorie in logiche soddisfacenti alcune proprietà di compattezza. Si dà una carat­
terizzazione delle logiche [X, \L\-compatte generate da quantificatori di cardinalità. Si 
stabilisce che il primo cardinale k tale che una logica è (k , &)-compatta è debolmente 
inaccessibile e soddisfa la proprietà dell'albero. Dai risultati enunciati appare un raf­
fronto assai particolareggiato fra i due concetti di (X , ^-compattezza e [X , [x]-compattezza. 

For an Abstract Logic L, [4] introduced the notion of [X, [i]-compactness 
which is, in many respects, more natural than (X , (ji)-compactness (nevertheless, 
when one is interested in logics which are not fully compact, this new compact­
ness property seems much stronger than the older one: as an example, L ^ (Q3) 
is (co , co) but not [to , to]-compact). 

The aim of this paper is to announce some results about [X, ^-compact­
ness and, in most cases, alternative forms for (X , (ji)-compactness are given. 
At least, we show that the new notion is not only interesting in itself, but can 
also be used to suggest new theorems about (X, (ji)-compactness. 

Unexplained notions and notations can be found in [1], [2], [4]; X, \i, 
v , k denotes infinite cardinals; if L is a logic, Fv (L) is the class of all couples 
(D , V ) , D an ultrafilter and V filter such that J J IX = L M > for every model 

D|V 

XI of cardinality < v. 

(D , V) is (X , (Ji)-regular iff in V there is a partition ( 1 ^ e s (x) such that 

U lxe T>, for every a G X. 
x D. {a} 

THEOREM 1. If L is [X , cù]-compact and K=;{& | there is v such that: 
(D , V)e Fv (L) implies | J J k | =* k) , then ke K implies that fr^k. Moreover, 

D|V 

if [\L , (/*] n K ==s 0 , then for every v there is (D , V) e Fv (L) , (D , V) (X , co)-

regular, such that inf {K n [(** > °°)} > I FT &' I ==i I I Ï V* I > H-*» for every 
D|V D|V 

fi' e [(x , [x*] . 

(*) Nella seduta del 29 novembre 1986. 
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COROLLARY 1. There is no logic generated by monadic and equivalence quan­
tifiers satisfying the Relativized Upward Lowenheim Skolem Property and properly 
extending LW(0 . 

Corollary 1 strengthens [1, Ch. VI, Theorem 3.1.3] (but compare also with 
[3, p. 236]). The method of proof of Corollary 1 can be applied to many other 
kinds of quantifiers. 

In view of Theorem 1, a [X , G>]-compact logic L either is rich in Incom­
plete extensions of small cardinality, or satisfies many Lowenheim-Skolem-
Tarsky properties. A counterpart for (X, ca)-compactness is: 

THEOREM 2. Suppose that L is (X, u>)-compact, and put K =t {k | for 
every L-theory T with | T | ;< X, and for every unary predicate U, if every finite 
subset of T has a model in which | U | < k, then T has a model in which | U | < 
< k} . Then, if | T | < X, (U a ) a e X are unary predicates, [\L , fx'] Pi K = 0 
and every finite subset of T has a model in which | U a | G [\L , jx'] (a G X), then T 
has a model in which inf (K (~^{\L , oo)) > | U a | — | Up | > \L, for every a , 
pG X. 

THEOREM 3. Suppose that L is single-sorted and (X, <ù)-compact, and sa­

tisfies the Craig Interpolation Property. Then either : (i) L contains a sentence 

of empty type not in LtoW or (ii) if (T a ) a e X are h-theories, | T a | < X (a G X), each 

having an infinite model, then they have models of the same infinite power. 

In Theorem 3 we do not need the hypothesis that L is closed under relati-
vization, which is essential in all the other theorems. 

If N is a logic, let NXtx be the logic obtained by N, admitting conjunctions 
and disjunctions of less than X sentences, and quantifications over less than \L 
constants. The following generalizes a result of [4]. 

THEOREM 4. If \L is the first cardinal such that N is [(X , \i\-compact, then 
also N ^ is [(/., \x\-compact, and \L is a measurable cardinal. 

Theorem 4 cannot be extended to N ^ : if [x is an uncountable measurable 
cardinal, L ^ (Qc/^) is QJL-, JJL]-compact, but L ^ (Qc^) is not [\L , (ji]-compact. 
Nevertheless, we have an analogue for (k , &)-compactness: 

THEOREM 5. If k is the first cardinal such that N is (k, k)-compact, then 

Nfc0 is still (k , k)-compact, so that k is weakly inaccessible and has the tree pro­

perty. If, in addition, k is strong limit, then k is weakly compact. 

THEOREM 6. If K is any class of cardinals, then L ^ ^ Q J ^ K is [X, JA]-

compact iff there exists a (X , \f)-regular not (cf coa, cf cùa)-regular (a G K) ultra-
filter D such that k < cùa implies \ Y[ k I < wa (aG K). 

file:///i/-compact
file:///x/-compact
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Theorem 6 shows an influence of set-theoretical axioms (concerning the 
existence of non-regular ultrafilter) on the problem of compactness of cardi­
nality logics. Set theory influences also the possible compactness spectrum 
of logics: 

THEOREM 7. If I, J are sets, and the vfs are regular cardinals, then the 
following are equivalent : 

(i) There exists a logic. [\ , ^-compact (ie I) not \y^, k^-compact (je J). 

(ii) There exists a logic as in (i) generated by a set of cardinality quantifiers. 

(iii) For every je] there exists v* , kj < v* <! v^, such that for every 
ie I there is an ultrafilter which is (X2-, ^-regular but not (v* , v*)-regular, for 
je J. 

Theorem 7 improves [3, Lemma 6.4 (ii)]. 
In many particular cases, Theorem 6 can be used in order to give a more 

explicit characterization of [X, [x]-compact cardinality logics. An example is: 

THEOREM 8. / / k is strongly compact (or just sup (k, Cù^-compact) and 
X > k is regular, then L ^ (Qa) is [X, k]-compact iff c/(coa)$ [k , X] and vx < 
< coa , for all v < o)a with cfv>k. 
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