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Fisiologia. — Evaluation of the variance of a particular estimate 

of indirect power spectrum : Application to spectral analysis of membra

ne noise <*>. No ta di FRANCESCO A N D R I E T T I , presentata (•*) dal Cor -

risp. V. CAPRARO. 

RIASSUNTO. — Nel presente lavoro è stata considerata una particolare stima S2 (/) 
dello spettro di potenza di un processo casuale stazionario ed è stata calcolata una espres
sione analitica della sua varianza, valida nel caso di processi normali. Sono anche state 
determinate delle espressioni approssimate valide in casi particolari. 

I risultati ottenuti sono stati confrontati con quelli della stima Sj (/), per cui il va
lore della varianza era già conosciuto. 

Per controllare la validità delle deduzioni teoriche è stato utilizzata una simula
zione numerica di un processo stazionario determinato dalle fluttuazioni di conduttanza 
di un canale del potassio che segue una cinetica di Hodgkin e Huxley. 

1. Theorical analysis. Let us consider the zero mean random variable 

x (t). In the present paper we are interested in the estimate of the autoco-

variance function (see, for example, Bendat and Piersol, 1971, p. 282, [1]) 

oo 

R,(r) = ( l /T) (* (*)*(*•+ \r \) dt 

0 

and the corresponding power spectrum estimate 

T 

S 2 (/) = j R2 (r) exp (— i 2nfr) âr 

- T 

for which we do not know any analytical evaluation of the variance. It is clear 

that in this case an extra length of signal must be available on the right of the 

(0 , T) interval. 

In particular we want to compare the variance of S2 (/) with that of the more 

commonly used estimate 

T 

S x ( / ) = J k1(r)exp(-i2njr)àr 
- T 

(*) Lavoro eseguito nel Dipartimento di Fisiologia e Biochimica Generali del
l'Università degli Studi di Milano, Via Celoria, 26. 

(**) Nella seduta del 10 maggio 1986, 
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where 

T - | r | 

Rx (r) = (1/T) f x (t) x (t + \r |) àr , 

To obtain our results we will follow a method similar to that given by 
Jenkins and Watts, 1968, p. 412, [2] to evaluate the variance of Sx (/), for Nor
mal processes. 

Let us rewrite the autocovariance function estimate R2 (r) in the form 

0) 

T/2 

(1/T)f x(t — rl2)x(t + rl2)dt — T < r < T 

R 2 ( 0 = i -T/2 

> T 

and let us assume that the stochastic process x (t) has the property 

(2) Cov [x (t) x(t + rj ,x (v) x (v + r2)] = R (v — t) R (v — t + r2 — rx) + 

+ R (v — t + r2) R (v — t — r,) + K (v — *, rx , r2) 

where R (r) is the autocovariance function of x (t). This is the case, for exam
ple, for zero mean Normal processes ([2], p. 175), in which moreover 

K(v — t,rltrt) = 0. 

From (1) and (2) one has 

T/2 T/2 

R 

Cov [R,(r1),Rï(rO] = (l/T»)J j {*(v-t 
- T/2 - T/2 

r2 + h 
R [v — t 

r2 — *i 

2 

r2 + *i 

+ K (z; — £ , rx , r2) I da d£ . 

After a first integration one finds 

T 

(3) Cov [R2 fa), R2 (ra)] = (1/T2) J y (A) (T - | k |) d£ 

- T 



FRANCESCO ANDRIETTI, Evaluation of the variance of a particular, ecc. 437 

where v — t = k, and 

Recalling that 

oo 

R(r) = jS(/)exp(-x27r/r)d/ 
— OO 

and interchanging orders of integration, (3) becomes approximately 

oo oo 

Cov [R, (r,) , R2 (r,)] « (1/T*) j J {S (ft) S fe„) exp (nr^ (gl — gj) 

— oo —oo 

X (exp — (mrâ (& — £2) + exp (mr2 (^ —£2))} d& dg2 

T 

X 

-T 

This reduces to 

I (T — | * |) exp (i Ink (g, + g2)) dk 

oo oo 

where {S#} stands for the quantity in braces above. This formula is exact 
for Normal processes. 

Substituting gl=f + g, g2=f—gt so that dgldg2 = 2 dfdgf the in
tegral reduces to 

(4) 

oo oo 

(2/T*) j j {S ( / + g) S (J-g) exp (/ 2ng (ry - r2)) + 

+ S(f+g)S(f—g) exp (x 2 ^ (r, + r2)} ^ ^ / T d/<fe 
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By recalling the définition of S2(/), we easily find that 

T T 

(5) Cov [S2 (/J , S2 (/,)] = j j Cov [R2 (r,) , R2 (r,)] X 

_ T - T 

X exp (— i 2TZ (fx rx + /2 ''2)) d ri dra. 

Substituting (4) in (5), interchanging orders of integration and integrating 
over rx and r2 one obtains for Cov [S2 (/i) , S2 (/2)] 

s i n 2 2 ^ T 4 / j S ( / + , ) S r . s i n 2 . ( / 2 + , ) T 

— OO 

sin27r(/i— g)T 

vrn\) - ^ - * s(/+,)sc/-,) - ^ 

(6) 

d^ + 

f sin«27t/T r sin 2TC (/, - g ) T sin 2iz (/, - g ) T ^ | 

When the spectrum is approximately constant over the range from fx to 
/2, the term S (/) may be taken outside the integral, and one obtains 

(7) Cov [S, (A) , S2 (/,)] * (S* (/)/T) j j Sm2^Zf)T 

— OO 

OO 

sin 271 (/, + g) T r s i n2 T C ( / 1 -g )T sin 2TT ( / 2 - g ) T ^ 
*(/. + *) * J *(fi~g) *{f*-g) g 

— OO 

_ S» (/) j 8 i n 2 " ( / i + / « ) T + sin 2n (/, - / 2 ) T 
*T ( £ + / . ) * T ( / X - / , ) 

so that 

(8) Var [S, (/)] «* 4 S* (/) { ^ ^ + 1 

This result may be compared with the variance of Sx (/). From Jenkins and 
Watts' formula (A 9.1.16) ([2], p. 415) one obtains 

(8') Var [&(/)] * S « 0 ) { ^ ^ + 1 



FRANCESCO ANDRIETTI, Evaluation of the variance of a particular•, ecc. 439 

When the value of T is large, the standard deviations of S 2 ( / ) and Sx ( / ) 
for spectra approximately constant around / , become 

(9) T V a r [ S 2 ( / ) ] ~ 2 S ( / ) 

(9') Ì V a r [ S , ( / ) ] ^ S ( / ) . 

One obtains a different approximation of (6), holding when T is large 
enough, by substituting (sin 2rzfli)jizf with a S function 

(10) (1/TM , SHg)^^r ^:if,^r dg 

*ux—g) n(A—g) 

that for S ( /) constant reduces to the preceding formula (7). 
When a lag window wx (r) is considered, wx (r) = 0 for T > r > M, so that 

the spectral estimate is given by 

M 

S 2 ( / ) = J R 2 ( r ) ^ z ( r ) e x p ( — i2nfr)drt 

- M 

one has 

M M 

(11) Cov [S, (A), S, (/,)] = j J Wj^w^r,) Cov [R2(riiR2(r2)] 

- M -M 

X exp (— i 2TC (fx rx + f2 r2)) drx dr2 

When T is large, by approximating (sin 2nfT)lnf with a S function, one 
has from (4) 

00 

(12) Cov [R, (rx) , R2 (rt)] ** (1 /T) J S* (g) {exp (,' 2ng (r, - r2)) 

— CO 

+ exp (i-2ng (rx + r2))} dg . 
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Interchanging orders of integrations, one obtains from (11) and (12) 

oo 

(13) Cov[Sf(/0 , M/0 ] ~ (1/T) J S»(*) V?(fl-g){W(f, + g) + 
— oo 

where 

w ( / ) = wt (r) exp (—i 27zfr) dr 

Let us assume that the spectrum S (/) is smooth over the width of the spec
tral window W (/), which is narrow, so that the terms in the right hand side of 
(13) do not overlap very much. In this case, taking fx = / 2 = / , we may neglect 
the first term of the right hand side of (13), and obtain 

oo M 

(14) Var [S, (/)] ** (S« ( / ) /T) j W» (g) àg = (S« ( / ) /T) j w\ («) au 

-OO - M 

by ParsevaPs theorem. 

So we may conclude this theoretical section by observing that the standard 

deviation of S2 ( / ) , given by (9), is twice that of Si ( / ) , given by (9'), when no 

windows are used. This seems to be a new result, and is contrary to what 

could be conjectured on the base that Rx (r) (but not R2 (r)) has meaningless 

values $t lags proximal to T. (Bertora et al, 1973, p. 67 [3]). On the other 

hand, in the case of windows the same formula (14) holds also for S2 (f) ([2], 

p. 418). Observe that analytical expressions for the variance of Sj (/) and any 

lag window may be generalized to non-Normal processes (Parzen, 1967 [4]). 

2. Application of the theoretical results to the spectral analysis of nerve 
membrane noise. In order to test our theoretical results and their implications 
in the spectral analysis of membrane noise, we will consider a well-known 
model of the electrical activity of excitable membranes (Hodgkin and Huxley, 
1952 [5]). In this model one assumes that the potassium channel permeability 
depends on the presence of four statistically independent subunits. Each of 
them exists in an excited or in a non-excited state, with probability p1 and p0 

respectively. When all subunits of the channel are in the excited state, the 
channel is open and its conductance is g. Otherwise it is closed, and its con
ductance is zero. 
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In steady-state conditions p0 and px are time-independent, and 

/>o=P/(oc + P) , p 1 = a / ( a + p ) > 

where a and p are experimentally determined. 
Let us indicate with P01 (t, A*) the probability of finding a channel closed 

at time t and open at time t -f- A*, and P n (t, A*) that of finding a channel open 
at time t and t + A*. In steady-state conditions the process is stationary and 
P01 (A?) and P n (A*) will depend only on the value of At It will be 

Poi(A*) + Pu(A*) = P i = # . 

where P1 is the probability of finding the channel in an open state. Since 
Pn(Ai)=p\p*ll(At)9 where p1{1(At) is the conditional probability that one 
subunit be in an excited state at time A*, provided that it is in an excited state 
at time 0, one has 

Vm(to)=p\-p[p'in(At). 

From the Bayes' formula we have the conditional probability that a channel 
is open at time t, provided that it is closed at time 0 

pI/0 (A*)=pM (A*)/P0=(Pi-p\Ptn mm -fl 

and p1/1 (At) is given by the Hodgkin and Huxley equation 

pllx (At) = a/(a + P) + (1 — a/(a + 3)) exp (— (a + P) M) . 

The conditional probability P0/1 is 

P0/1(AO = l - P 1 / 1 ( A i ) = l - ^ ( A « ) . 

The spectrum of a single channel may be calculated according to the pre
vious model. In fact, letting g (t) a random variable taking on the two states 
g and 0, the auto co variance function of the zero mean random variable x (t) = 

= g(t)—g?i i s 

R (r) = E {x (t) x(t+\r |)} =g* P, P m (r) -g* P* . 

Letting Px/1 (r) = p\jx (r), one finds after some straighforward calculations 

R if) =f- PJ S ()) PTy (1 - PiV «P ( -;>/y)) 
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where 

7 j = l / ( a + p). . 

The power spectrum S (/) is then 

(15) S ( / ) = I R (r) exp (— Imfr) àr = 

mj ^ S ^ r a - ^ ^ friil* 

One of the many reasons for studying the ionic conductances fluctuations 
of excitable membranes is that of determining the number ol (potassium) ionic 
channels (see, for example, Neher and Stevens, 1977 [6]). In fact, if n is the 
number of channels present in a given area of membrane and if moreover all 

Fig. 1. - (•) Average value of 80 computed spectral estimates S2 (/) for N = 7; 
(n) stantard deviation of (•). The lower continuous line represents S (/) and the 

upper one 2 S (/). 
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i v: 

Fig. 2. - As fig. 1 for N = 9. 

ot them are statistically independent, then the total power spectrum due to the 
contribution of all channels is 

(16) S - ( / ) = « S ( / ) 

Given that the value of n g is that of the total conductance, as experimentally 
determined (see [6]), fitting the results of the spectral analysis to Stot (/), (see, 
for example, Be van et al., 1979 [7]), and taking into account (15) and (16), one 
obtains an estimate of n and gf provided that all assumptions are satisfied. 

3. Comparison between the theoretical and the simulated results. In the 
simulation we have taken a = 0.05 ms_1, (3 = 0.01 ms -1 . These are the 
rounded values experimentally found in our laboratory (Dr. Peres, personal 
communication) for the semitendinous muscle of Rana Esculenta at a membrane 
potential of — 20 m V, and they are not far from those given in the literature 
for the same potential and temperature (about 3° C) of similar fibres (Adrian, 
Chandler and Hodgkin, 1970 [8]). 

In order to avoid aliasing effects in the use of fast Fourier transforms algo
rithms, we have taken a sampling interval A t = (2/5) fd — 4 ms ([1] p. 321), 

29. — RENDICONTI 1986, vol. LXXX, fase. 6 
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where fd= 100 Hz is the cut-off frequency. This because the range of inte
rest of spectral analysis, as appears from the current literature, lies between 
0 and 100 Hz. The input was generated by a stochastic routine according to 
the value of P1/0 (A/) and P0/1 (At) of the model, and was represented by 2N 

points spaced by A*. N ranged between 7 and 9. The upper limit was due 
to the limited storage capacity of the personal computer. The output was 
represented by 2 N points spaced by 1/(2N A*) in the frequency domain. Our 
figures will show only a 32 points output, from 0 to 60.5 Hz. 

In figs. 1 and 2 the validity of (9), is tested when no lag windows are used. 
One sees that the theoretical results agree fairly well with the computed ones. 
Here and in the following figs, the v-axis is in arbitrary units, so that g may be 
any constant. 

In figs. 3 and 4 one may see the decrease of standard deviation when a box

car window, w1 (r) = 1, and an algebraic window, w1 (r) = (1 — (j r |/M)S, are 

used. For comparison the standard deviation of Sx (/) is also shown. We ob

serve that the decrease in the variance is less than that predicted by (14), and 

is about the same for both Sj (/) and S2 (/). According to the reduction of the 

-

n 
3 

4 

• 
' • 

n 

. 

n 

n 

Fig. 3. - (•) Average value of 80 computed spectral estimates S2 ( /) with a boxcar 
window, N = 9, M = 16 A*; (•) standard deviation of (•). 
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Fig. 4. - Effect of an algebraic window with 8 =• 2, N = 7, M = 16 A* on the average 
value of 80 computed spectral estimates Si ( / ) (•), and on their standard deviation (•) . 
Standard deviation of the same algebraic window for the estimate S2 (/) (••). The lower 
continuous line represents the predicted value of (•) and of (S3). The upper line 

represents the unbiased spectrum S (/). 

variance due to the use of the windows, one sees that the average values of the 
computed spectral estimates of figs. 3 and 4 are much smoother than those of 
figs. 1 and 2. 

As a conclusion, for what concerns which spectral estimate should be pre

ferred, Sl (/) or S2 (/), we do not see any reason in the choice of S2 (/), when 

the analysis is digitally performed. In fact, when no windows are used, the 

variance of S2 (/) is twice that of Sx (/). When lag windows are used, the va

riance of S2 (/) is the same of Sr (/), and the slight improvement of the bias is 

too low to justify the use of the first estimate. We recall that for the compu

tation of S 2 (/) we are not allowed to use fast Fourier transforms algorithms in 

convolutions, and this fact enormously increases the computation time required 

for the autocovariance function estimate, when N is large. Instead the estimate 

S2 (/) may become of interest in analogue data analysis procedures (see, for 

example, [1], p. 282). 
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