Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Umberto Sampieri
 Traces of functions in Bergman weighted spaces on tubular domains

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 79 (1985), n.6, p. 184-188.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1985_8_79_6_184_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Geometria. - Traces of functions in Bergman weighted spaces on tubular domains. Nota di Umberto Sampieri ${ }^{(*)}$, presentata ${ }^{(* *)}$ dal Corrisp. E. Vesentini.

Riassunto. - Si dà una caratterizzazione completa per tracce di funzioni olomorfe a quadrato sommabile per particolari misure su domini tubolari.

Introduction

Let Ω be an open, convex, sharp, homogeneous cone in \mathbf{R}^{n} and let $\mathrm{D}=$ $=\left\{z \in \mathbf{C}^{n}: \operatorname{Im}(z) \in \Omega\right\}$ be the associated tubular domain.

In a forthcoming paper ([2]) we proved, in the more general se ting of Siegel domains, that, chosen a point e in Ω, it is possible to introduce a Lie group structure on D such that ie is the identity element, left translations are holomorphic automorphisms and $\mathrm{S}(e)=\left\{x+\mathrm{ie}, x \in \mathbf{R}^{n}\right\}$ is a Lie subgroup homomorphic to \mathbf{R}^{n}.

We also introduced a family of Bergman weighted spaces F_{h}, h in $(0, \infty)$ by setting:

$$
\begin{equation*}
\mathrm{F}_{h}=\{\mathrm{F}: \mathrm{D} \rightarrow \mathbf{C}, \text { holomorphic and such that: } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\|\mathrm{F}\|_{h}^{2}=\int_{\mathrm{D}}|\mathrm{~F}(z)|^{2} \Phi_{\Omega}(\operatorname{Im}(z))^{1-h} \mathrm{~d} m(z) \tag{2}
\end{equation*}
$$

where Φ_{Ω} is the characteristic function for Ω.
In this note we give a complete characterization of traces of functions in F_{h} on $\mathrm{S}(e)$ by proving the following:

Theorem: Let g be an analytic function on \mathbf{R}^{n}. Then there exists a function F in F_{h} such that $\mathrm{F}(x+\mathrm{ie})=g(x)$ for each x in \mathbf{R}^{n} if and only if :
i) $g \in \mathrm{~L}^{2}\left(\mathbf{R}^{n}, \mathrm{~d} m\right)$
ii) $\widehat{g}(x)=0$ for each x in $\mathrm{R}^{n} \backslash \Omega^{*}$
iii) $\widehat{g}(x) e^{2 \pi\langle x, e\rangle} \Phi_{\Omega^{*}}(x)^{h / 2} \in \mathrm{~L}^{2}\left(\Omega^{*}, \mathrm{~d} m\right)$.
(*) Scuola Normale Superiore, 56100 Pisa.
(**) Nella seduta del 22 novembre 1985.

Moreover for each z in D we have:

$$
\begin{equation*}
\mathrm{F}(z)=\int_{\Omega^{*}} e^{2 \pi i\langle z, \zeta\rangle} e^{2 \pi\langle\zeta, e\rangle} \widehat{g}(\zeta) \mathrm{d} m(\zeta) \tag{3}
\end{equation*}
$$

We observe that for $h=1$, i.e. when F_{h} is the ordinary Bergman space, condition iii) may be rephrased as:

$$
\text { iii') } \widehat{g}(x) e^{2 \pi\langle x, e\rangle} \in \mathrm{L}^{2}\left(\Omega^{*}, \mathrm{~d} \mu\right)
$$

where $\mathrm{d} \mu$ is the Haar measure for Ω^{*}.

Lemmata. We recall that, denoting by Aut (Ω) the subgroup of GL (n, \mathbf{R}) of all linear transformations preserving Ω, we have :

$$
\begin{equation*}
\Phi_{\Omega}(\mathrm{A} y) \operatorname{det}(\mathrm{A})=\Phi_{\Omega}(y) \tag{4}
\end{equation*}
$$

for each y in Ω.
The following lemmata hold:

Lemma 1. There exists a constant $0 \leq c(\Omega)<1$ such that for each h in $(\mathrm{C}(\Omega), \infty)$ there exists $1(h)$ in \mathbf{R}^{+}such that :

$$
\begin{equation*}
\int_{\Omega} e^{-\langle x, y\rangle} \Phi_{\Omega}(x)^{1-h} \mathrm{~d} m(x)=1(h) \Phi_{\Omega^{*}}(y)^{h} \tag{5}
\end{equation*}
$$

for each y in Ω^{*} where Ω^{*} is the dual cone (see for proof [1], pp. 22).
Lemma 2. Let h be in $(0, \infty)$. Then the C^{∞} function $f_{h}: \Omega^{*} \rightarrow \mathbf{R}^{+}$:

$$
\begin{equation*}
f_{h}(x)=e^{-2 \pi\langle e, x\rangle} \Phi_{\Omega^{*}}(x)^{-h} \tag{6}
\end{equation*}
$$

is bounded.
Proof. Chosen a point x in Ω^{*} let us consider the C^{∞} function $s: \mathbf{R}^{+} \rightarrow$ $\rightarrow \mathbf{R}^{+}$,

$$
\begin{equation*}
s(t)==f_{h}(t x) \tag{7}
\end{equation*}
$$

By computing its first derivative we deduce that it takes its maximum for $t=(n h) / 2 \pi\langle e, x\rangle$ and consequently:

$$
\begin{equation*}
s(t) \leq e^{-n h}(n h / 2 \pi\langle e, x\rangle)^{n h} \Phi_{\Omega^{*}}(x)^{-h} \tag{8}
\end{equation*}
$$

for each t in \mathbf{R}^{+}. Hence to prove Lemma 2 we only need to show that:

$$
\begin{equation*}
k(x)=(\langle e, x\rangle)^{-n h} \Phi_{\Omega^{*}}(x)^{-h} \tag{9}
\end{equation*}
$$

is bounded on $\mathrm{B}=\Omega^{*} \cap\left\{x\right.$ in $\left.\mathbf{R}^{n}:\|x\|=1\right\}$.
This is an immediate consequence of the fact that, since $\Phi_{\Omega^{*}}$ is unbounded on the boundary of Ω^{*} and there exists a constant a such that $\langle e, x\rangle \geq a\|x\|$ for each x in $\overline{\Omega^{*}}$, the function k can be extended to a continuous function on the compact set $\overline{\mathrm{B}}$.

The affine group of transformations of D onto itself is given by:

$$
\begin{equation*}
\operatorname{Aff}(\mathrm{D})=\left\{z \rightarrow \mathrm{~A} z+b, \quad \mathrm{~A} \in \operatorname{Aut}(\Omega), \quad b \in \mathbf{R}^{n}\right\} . \tag{10}
\end{equation*}
$$

We shall denote by $\mathrm{Aff}_{0}(\mathrm{D})$ the identity connected component of $\mathrm{Aff}(\mathrm{D})$. Let us introduce the closed subspace of $L^{2}\left(\mathbf{R}^{n}\right)$:

$$
\begin{equation*}
\mathrm{H}^{2}(\Omega)=\left\{f \text { in } \mathrm{L}^{2}\left(\mathbf{R}^{n}\right): f(x)=0 \text { for each } x \text { in } \mathbf{R}^{n} \backslash \Omega^{*}\right\} \tag{11}
\end{equation*}
$$

and the unitary representation $\mathrm{R}_{0}: \mathrm{Aff}_{0}(\mathrm{D}) \rightarrow L\left(\mathrm{~L}^{2}\left(\mathrm{R}^{n}\right)\right):$

$$
\begin{equation*}
\left(\mathrm{R}_{0}(\mathrm{~A}, b) f\right)(x)=\sqrt{\operatorname{det}(\mathrm{A})} f(\mathrm{~A} x+b) . \tag{12}
\end{equation*}
$$

Lemma 3. $\mathrm{H}^{2}(\Omega)$ is an invariant subspace of R_{0}.
A straightforward calculation shows in fact that:

$$
\begin{equation*}
\left.\mathrm{R}_{0} \widehat{(\mathrm{~A}}, b\right) f(x)=(\operatorname{det}(\mathrm{A}))^{-1 / 2} e^{\left.2 \pi i i^{t} \mathrm{~A}^{-1} x, b\right\rangle} \hat{f}\left({ }^{t} \mathrm{~A}^{-1} x\right) \tag{13}
\end{equation*}
$$

and so Lemma 3 is proved.
It is well known that the unitary representations $\mathrm{R}_{h}: \mathrm{Aff}_{0}(\mathrm{D}) \rightarrow \mathscr{L}\left(\mathrm{F}_{h}\right)$, h in $(c(\Omega), \infty)$:

$$
\begin{equation*}
\left(\mathrm{R}_{h}(\mathrm{~A}, b) \mathrm{F}\right)(z)=(\operatorname{det}(\mathrm{A}))^{h+1 / 2} \mathrm{~F}(\mathrm{~A} z+b) \tag{14}
\end{equation*}
$$

are irreducible.
Lemma 4. The linear operators $\mathrm{L}_{h}: \mathrm{H}^{2}(\Omega) \rightarrow \mathrm{F}_{h}$:

$$
\begin{equation*}
\mathrm{L}_{h}(f)(z)=\int_{\Omega^{*}} e^{2 \pi i\langle z, x\rangle} \Phi_{\Omega^{*}}(x)^{-h / 2} \widehat{f}(x) \mathrm{d} m(x) \tag{15}
\end{equation*}
$$

are such that:
i) $\|\mathrm{L} f\|_{h}=\|f\|_{\mathrm{L}^{2}\left(\mathbf{R}^{n)}\right.}$
ii) $\mathrm{L}_{h} \circ \mathrm{R}_{0}=\mathrm{R}_{h} \circ \mathrm{~L}_{h}$.

Proof. Since:

$$
\begin{equation*}
\mathrm{L}_{h}(f)(x+i y)=e^{2 \pi i\langle x, s\rangle}\left(e^{-2 \pi\{y, s\rangle} \Phi_{\Omega^{*}}(s)^{-h / 2} \widehat{f}(s)\right) \mathrm{d} m(s) \tag{16}
\end{equation*}
$$

by Plancherel theorem we get:

$$
\begin{equation*}
\int_{\mathbf{R}^{n}}\left|\mathbf{L}_{h}(f)(x+i y)\right|^{2} \mathrm{~d} m(x)=\int_{\Omega^{*}} e^{-4 \pi(y, s\rangle} \Phi_{\Omega^{*}}(s)^{-h}|\widehat{f}(s)|^{2} \mathrm{~d} m(s) \tag{17}
\end{equation*}
$$

Therefore by Fubini theorem and remembering (5) we get, up to a multiplicative constant, i). Part ii) is an easy consequence of (13) and (4). In fact, given (A, b) in $\mathrm{Aff}_{0}(\mathrm{D})$, we have:

$$
\begin{align*}
& \mathrm{L}_{h}\left(\mathrm{R}_{0}(\mathrm{~A}, b) f\right)(z)=\int_{\Omega^{*}} e^{2 \pi i(z, s\rangle} \Phi_{\Omega^{*}}(s)^{-h / 2} \mathrm{R}_{0}(\mathrm{~A}, b) f(s) \mathrm{d} m(s)= \tag{18}\\
& \left.=\int_{\Omega^{*}} e^{2 \pi i(z, s\rangle} \Phi_{\Omega^{*}}(s)^{-h / 2}(\operatorname{det}(\mathrm{~A}))^{-1 / 2} e^{\left.2 \pi i i^{t} \mathrm{~A}^{-1} s, b\right)}-f^{(} \mathrm{A}^{-1} s\right) \mathrm{d} m(\mathrm{~s}) .
\end{align*}
$$

Changing variable we get identity ii).
Lemma 5. $\mathrm{L}_{h}: \mathrm{H}^{2}(\Omega) \rightarrow \mathrm{F}_{h}$ is a surjiective isometry.
Proof. Recalling the previous Lemma by i) $\operatorname{Im}\left(\mathrm{L}_{h}\right)$ is a closed subspace of F_{h}, which is invariant under R_{h} by ii). We conclude remembering that R_{h} is irreducible.

Proof of the Theorem. Let g be an analytic function on \mathbf{R}^{n} and suppose that there exists a (necessarily unique) F in F_{h} such that:

$$
\begin{equation*}
g(x)=\mathrm{F}(x+i e) \quad \text { for each } \quad x \text { in } \mathbb{R}^{n} . \tag{19}
\end{equation*}
$$

Consequently, by Lemma 5, there exists a unique f in $\mathrm{H}^{2}(\Omega)$ such that $\mathrm{F}=\mathrm{L}_{h}(f)$ and $\mathrm{so}:$

$$
\begin{equation*}
g(x)=\int_{\Omega^{*}} e^{2 \pi i(x, s)}\left(e^{-2 \pi(e, s\rangle} \Phi_{\Omega^{*}}(s)^{-h / 2} \widehat{f}(s)\right) \mathrm{d} m(s) \tag{20}
\end{equation*}
$$

Therefore, in consequence of Lemma 2, g is in $\mathrm{L}^{2}\left(\mathbf{R}^{n}\right)$ and:

$$
\begin{equation*}
\widehat{g}(x)=e^{-2 \pi\{e, x\rangle} \Phi_{\Omega *}(x)^{-h / 2} \widehat{f}(x) \tag{21}
\end{equation*}
$$

and that proves that g satisfies also conditions ii) and iii).

Moreover (3) is an immediate consequence of the identity $\mathrm{F}=\mathrm{L}_{h}(f)$ and of (21).

Conversely suppose that g satisfies conditions i), ii), iii). Then:

$$
\begin{equation*}
\left|e^{2 \pi i\langle z, s\rangle} e^{2 \pi\langle e, s\rangle} \widehat{g}(s)\right|=e^{-2 \pi\{y, s\rangle} \Phi_{\Omega^{*}}(s)^{-h / 2}\left|\Phi_{\Omega^{*}}(s)^{h / 2} e^{2 \pi\langle(e s)} \widehat{g}(s)\right| . \tag{22}
\end{equation*}
$$

Therefore, by Lemma 1 and condition iii), we can deduce that the integral (3) converges absolutely and defines an holomorphic function on D. It is then easy to verify that F belongs to F_{h} and that $g(x)=\mathrm{F}(x+i e)$ for each x in \mathbf{R}^{n}.

References

[1] Gindikin (1964) - Analysis in homogeneous domains. «Russian Math. Surveys», 19, 3-92.
[2] Sampieri (to appear) - Lie group structures and reproducing kernels on homogeneous Siegel domains, to appear, in «Annali di Matematica Pura e Applicata».

