ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Umberto Sampieri

Traces of functions in Bergman weighted spaces on tubular domains

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **79** (1985), n.6, p. 184–188. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1985_8_79_6_184_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ Geometria. — Traces of functions in Bergman weighted spaces on tubular domains. Nota di UMBERTO SAMPIERI ^(*), presentata ^(**) dal Corrisp. E. VESENTINI.

RIASSUNTO. — Si dà una caratterizzazione completa per tracce di funzioni olomorfe a quadrato sommabile per particolari misure su domini tubolari.

INTRODUCTION

Let Ω be an open, convex, sharp, homogeneous cone in \mathbb{R}^n and let $D = \{z \in \mathbb{C}^n : \text{Im}(z) \in \Omega\}$ be the associated tubular domain.

In a forthcoming paper ([2]) we proved, in the more general setting of Siegel domains, that, chosen a point e in Ω , it is possible to introduce a Lie group structure on D such that it is the identity element, left translations are holomorphic automorphisms and $S(e) = \{x + ie, x \in \mathbb{R}^n\}$ is a Lie subgroup homomorphic to \mathbb{R}^n .

We also introduced a family of Bergman weighted spaces F_h , h in $(0, \infty)$ by setting:

(1)
$$F_h = \{F : D \rightarrow C, \text{ holomorphic and such that}:$$

(2)
$$\| \mathbf{F} \|_{h}^{2} = \int |\mathbf{F}(z)|^{2} \Phi_{\Omega} (\operatorname{Im}(z))^{1-h} \mathrm{d}m(z)$$

where Φ_{Ω} is the characteristic function for Ω .

In this note we give a complete characterization of traces of functions in F_h on S (e) by proving the following:

THEOREM: Let g be an analytic function on \mathbb{R}^n . Then there exists a function F in F_h such that F (x + ie) = g (x) for each x in \mathbb{R}^n if and only if:

- i) $g \in L^2(\mathbf{R}^n, dm)$
- ii) $\widehat{g}(x) = 0$ for each x in $\mathbb{R}^n \setminus \Omega^*$
- iii) $\widehat{g}(x) e^{2\pi \langle x, e \rangle} \Phi_{\Omega^*}(x)^{h/2} \in L^2(\Omega^*, dm)$.

(*) Scuola Normale Superiore, 56100 Pisa.

(**) Nella seduta del 22 novembre 1985.

Moreover for each z in D we have:

(3)
$$\mathbf{F}(z) = \int_{\Omega^*} e^{2\pi i \langle z, \zeta \rangle} e^{2\pi \langle \zeta, e \rangle} \, \widehat{g}(\zeta) \, \mathrm{d}m(\zeta).$$

We observe that for h = 1, i.e. when F_h is the ordinary Bergman space, condition iii) may be rephrased as:

iii')
$$\widehat{g}(x) e^{2\pi \langle x, e \rangle} \in L^2(\Omega^*, d\mu)$$

where $d\mu$ is the Haar measure for Ω^* .

LEMMATA. We recall that, denoting by Aut (Ω) the subgroup of GL (n, **R**) of all linear transformations preserving Ω , we have :

(4)
$$\Phi_{\Omega}(Ay) \det(A) = \Phi_{\Omega}(y)$$

for each y in Ω .

The following lemmata hold:

LEMMA 1. There exists a constant $0 \le c(\Omega) < 1$ such that for each h in $(C(\Omega), \infty)$ there exists 1 (h) in \mathbb{R}^+ such that :

(5)
$$\int_{\Omega} e^{-\langle x,y\rangle} \Phi_{\Omega}(x)^{1-h} dm(x) = 1 (h) \Phi_{\Omega^*}(y)^{h}$$

for each y in Ω^* where Ω^* is the dual cone (see for proof [1], pp. 22).

LEMMA 2. Let h be in $(0, \infty)$. Then the C^{∞} function $f_h: \Omega^* \to \mathbb{R}^+$:

(6)
$$f_h(x) = e^{-2\pi \langle e, x \rangle} \Phi_{\Omega^*}(x)^{-h}$$

is bounded.

Proof. Chosen a point x in Ω^* let us consider the C^{∞} function $s: \mathbb{R}^+ \to \mathbb{R}^+$,

$$(7) s(t) = f_h(t x).$$

By computing its first derivative we deduce that it takes its maximum for $t = (nh)/2 \pi \langle e, x \rangle$ and consequently:

(8)
$$s(t) \leq e^{-nh} (nh/2 \pi \langle e, x \rangle)^{nh} \Phi_{\Omega^*}(x)^{-h}$$

for each t in \mathbf{R}^+ . Hence to prove Lemma 2 we only need to show that:

(9)
$$k(x) = (\langle e, x \rangle)^{-nh} \Phi_{\Omega^*}(x)^{-h}$$

is bounded on $B = \Omega^* \cap \{x \text{ in } \mathbb{R}^n : ||x|| = 1\}$.

This is an immediate consequence of the fact that, since Φ_{Ω^*} is unbounded on the boundary of Ω^* and there exists a constant a such that $\langle e, x \rangle \ge a ||x||$ for each x in $\overline{\Omega^*}$, the function k can be extended to a continuous function on the compact set \overline{B} .

The affine group of transformations of D onto itself is given by:

(10)
$$\operatorname{Aff}(\mathbf{D}) := \{ z \to \mathbf{A}z + b , \quad \mathbf{A} \in \operatorname{Aut}(\Omega) , \quad b \in \mathbf{R}^n \}.$$

We shall denote by $Aff_0(D)$ the identity connected component of Aff(D). Let us introduce the closed subspace of $L^2(\mathbf{R}^n)$:

(11)
$$H^{2}(\Omega) = \{f \text{ in } L^{2}(\mathbb{R}^{n}) : f(x) = 0 \text{ for each } x \text{ in } \mathbb{R}^{n} \setminus \Omega^{*} \}$$

and the unitary representation R_0 : Aff₀(D) $\rightarrow L(L^2(\mathbb{R}^n))$:

(12)
$$(\mathbf{R}_0(\mathbf{A}, b)f)(x) = \sqrt{\det(\mathbf{A})}f(\mathbf{A}x + b).$$

LEMMA 3. $H^{2}(\Omega)$ is an invariant subspace of R_{0} . A straightforward calculation shows in fact that:

(13)
$$R_0(\widehat{A}, b) f(x) = (\det(A))^{-1/2} e^{2\pi i \langle A^{-1}x, b \rangle} \hat{f}(A^{-1}x)$$

and so Lemma 3 is proved.

It is well known that the unitary representations $R_h : Aff_0(D) \to \mathscr{L}(F_h)$, *h* in $(c(\Omega), \infty)$:

(14)
$$(R_h(A, b) F)(z) = (\det(A))^{h+1/2} F(Az + b)$$

are irreducible.

LEMMA 4. The linear operators $L_h: H^2(\Omega) \to F_h$:

(15)
$$L_{h}(f)(z) = \int_{\Omega^{*}} e^{2\pi i \langle z, x \rangle} \Phi_{\Omega^{*}}(x)^{-h/2} \widehat{f}(x) dm(x)$$

are such that:

- i) $\|Lf\|_{h} = \|f\|_{L^{2}(\mathbb{R}^{n})}$
- ii) $L_h \circ R_0 = R_h \circ L_h$.

Proof. Since:

(16)
$$L_h(f)(x+iy) = e^{2\pi i \langle x,s \rangle} \left(e^{-2\pi \langle y,s \rangle} \Phi_{\Omega^*}(s)^{-h/2} \widehat{f}(s) \right) dm(s)$$

by Plancherel theorem we get:

(17)
$$\int_{\mathbf{R}^{n}} |\mathbf{L}_{h}(f)(x+iy)|^{2} dm(x) = \int_{\Omega^{*}} e^{-4\pi \langle y,s \rangle} \Phi_{\Omega^{*}}(s)^{-h} |\widehat{f}(s)|^{2} dm(s).$$

Therefore by Fubini theorem and remembering (5) we get, up to a multiplicative constant, i). Part ii) is an easy consequence of (13) and (4). In fact, given (A, b) in $Aff_0(D)$, we have:

(18)
$$L_{h}(\mathbf{R}_{0}(\mathbf{A}, b)f)(z) = \int_{\Omega^{*}} e^{2\pi i \langle z, s \rangle} \Phi_{\Omega^{*}}(s)^{-h/2} \mathbf{R}_{0}(\mathbf{A}, b)f(s) dm(s) =$$
$$= \int_{\Omega^{*}} e^{2\pi i \langle z, s \rangle} \Phi_{\Omega^{*}}(s)^{-h/2} (\det(\mathbf{A}))^{-1/2} e^{2\pi i \langle \mathbf{A}^{-1}s, b \rangle} \widehat{f}(t\mathbf{A}^{-1}s) dm(s) .$$

Changing variable we get identity ii).

LEMMA 5. $L_h: H^2(\Omega) \to F_h$ is a surjuctive isometry.

Proof. Recalling the previous Lemma by i) Im (L_h) is a closed subspace of F_h , which is invariant under R_h by ii). We conclude remembering that R_h is irreducible.

Proof of the Theorem. Let g be an analytic function on \mathbb{R}^n and suppose that there exists a (necessarily unique) F in F_h such that:

(19)
$$g(x) = F(x + ie)$$
 for each x in \mathbb{R}^n .

Consequently, by Lemma 5, there exists a unique f in H²(Ω) such that $F = L_h(f)$ and so:

(20)
$$g(x) = \int_{\Omega^*} e^{2\pi i \langle x, s \rangle} \left(e^{-2\pi \langle e, s \rangle} \Phi_{\Omega^*}(s)^{-\hbar/2} \widehat{f}(s) \right) \mathrm{d}m(s) \, .$$

Therefore, in consequence of Lemma 2, g is in $L^{2}(\mathbb{R}^{n})$ and:

(21)
$$\widehat{g}(x) = e^{-2\pi \langle e, x \rangle} \Phi_{\Omega^*}(x)^{-h/2} \widehat{f}(x)$$

and that proves that g satisfies also conditions ii) and iii).

Moreover (3) is an immediate consequence of the identity $F = L_{h}(f)$ and of (21).

Conversely suppose that g satisfies conditions i), ii), iii). Then:

$$(22) \qquad | e^{2\pi i \langle z, s \rangle} e^{2\pi \langle e, s \rangle} \widehat{g}(s) | = e^{-2\pi \langle y, s \rangle} \Phi_{\Omega^*}(s)^{-h/2} | \Phi_{\Omega^*}(s)^{h/2} e^{2\pi \langle e, s \rangle} \widehat{g}(s) |.$$

Therefore, by Lemma 1 and condition iii), we can deduce that the integral (3) converges absolutely and defines an holomorphic function on D. It is then easy to verify that F belongs to F_h and that g(x) = F(x + ie) for each x in \mathbb{R}^n .

References

- [1] GINDIKIN (1964) Analysis in homogeneous domains. «Russian Math. Surveys», 19, 3-92.
- [2] SAMPIERI (to appeer) Lie group structures and reproducing kernels on homogeneous Siegel domains, to appear, in «Annali di Matematica Pura e Applicata».