ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

ENRICO JANNELLI

The energy method for a class of hyperbolic
equations

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti, Serie 8, Vol. 79 (1985), n.5, p. 113-120.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1985_8_79_5_113_0>

L’utilizzo e la stampa di questo documento digitale & consentito liberamente per motivi di
ricerca e studio. Non é consentito 1'utilizzo dello stesso per motivi commerciali. Tutte le
copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/


http://www.bdim.eu/item?id=RLINA_1985_8_79_5_113_0
http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1985.



ENRICO JANNELLI, The energy method for a class, ecc. 113

Equazioni a derivate parziali. — The energy method for a class
of hyperbolic equations. Nota *) di ENRICO JANNELLI, presentata dal Cor-
risp. E. DE GIORGL

RiassunTo. — In questa nota viene introdotto un nuovo metodo per ottenere
espressioni esplicite dell’energia della soluzione dell’equazione iperbolica

* (ﬁ)m wut  E avn; @ (f’_) (ﬁ)’ w=0.
ot vl +i<m ox/ \ %t
ji<m—1

Stimando opportunamente queste espressioni si ottengono nuovi risultati di buona
positura negli spazi di Gevrey per ’equazione *) quando questa ¢ debolmente iperbolica

§ 1. INTRODUCTION

Let us consider the following Cauchy problem

d\m o\*/oYV\/ n
fu= <§> * +1v1§_\<mav’j ® <a_x> (a) .
jsm—1

1y | 20 =5@

| <—aa—t)m_l u (0,%) = o, () -

We assume that equation (1) is hyperbolic, in the sense that the principal
symbol

(2) Pm(t;'r,E):fc”’+I[2 a@®t+  (t;8)e[0,T] xRy
e it

(*) Pervenuta all’Accademia il 5 ottobre 1985.
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has only real roots (¢ ; £). More precisely, if we define

(3) A= inf |7;(t;E) —n; (t;E)]

celort]

i)
then we shall say that equation (1) is strictly hyperbolic if » > 0 and weakly
hyperbolic if »=0.

Throughout this work we shall suppose that a, ; (f) belong to L* ([0, T])
if [v|+j7<m—1; as regards the coeflicients a, ; () of the principal part
(Iv |+ j=m), we suppose for the moment that they belong to C ([0, T7).

We want to obtain suitable «a priori» estimates on % (¢, x), depending on
the coefficients a4, ; () and on the initial data o, (x)... ¢, (¥).

To this aim, we introduce the Fourier transform of u (¢, x) (with respect
to x) and of ¢, (x) (h=1...m)

(4') v (t; £) :f u(t; x) e—(8.2) dy
RY
) /c;h &) =f @p (%) e dy h=1...m.
RY

Then we define

@1E N0
@1 So
0 V(;8) = : m — vector ;

iE | (%)m—z v
&

FRAY]
V| =m—j
0 10...... 0
0 010 0
¥ A(;8) = m X m matrix ;
0 ........ 01
H,H,, .. HH,
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91 ()

9) O (&)= m —vector .

o ()

Now problem (1) may be transformed into a family of first order ordinary
differential systems, parametrized by &, as follows (here and in the following,

if F is any function, vector or matrix, we shall denote % F by F):

{V’(t;ﬁ)zilﬁlA(t;E)V(t;€)+B(t;E)V(t;E)
(10) €1 =1;te[0,T]
V(0;8)=02()

where B (¢ ; £) is a bounded m X m matrix (we remark that we confine ourselves
to consider only | & | > 1).

In view of the Paley-Wiener theorem, we are interested in estimating the
growth of |V (¢;&) | as | €| — 4 oo; now, as the eigenvalues of A (¢ ; &) are

the roots 1, ( t ,é—|> of the principal symbol P, <t ; I——%——O , we see that, in
\

the strictly hyperbolic case, the matrix A (¢ ; £) may be uniformly diagonalized;
this is the classical method used to obtain estimates on | V(¢ ;£) | and, there-
fore, on u (¢, x) (see, for instance, [6]).

On the other hand, in the weakly hyperbolic case A (¢ ; £) is no longer dia-

gonalizable; moreover, the roots =, ( ) may not be regular in #.

. &
MH
Nevertheless, we shall perform an energy method which will be useful
both in strictly and weakly hyperbolic cases, and will lead us to obtain explicit
expressions for the energy of V (¢ ; £), which will be written only in terms of o,
its derivatives, the dual variable £ and the coefficients a, ; (t) of the principal
part of equation (1) (| v| 4+ j=m). This energy method, as we shall see later
on, will allow us to get some new results of Gevrey well-posedness for equa-
tion (1) in the weakly hyperbolic case; these results will appear in [5].

§ 2. THE ENERGY METHOD
Let us consider problem (10). Let Q (¢ ; £) be any symmetric non negati-

ve real-valued m X m matrix of Cl-class in 2.
We set (here and in the following (,) denotes the usual bracket in C™)

(11) E(t;8)=(Q@;8V(t;8),V(E;8))

and we call E(¢; %) an energy for V (¢;£). Obviously, we must carefully



116 Atti Acc. Lincei Rend. fis. — S. VIII, vol. LXXIX, 1985, fasc. §

choose the matrix Q. In fact, deriving (11) with respect to ¢ and taking into
account (10), we easily get

(12)  E=(QV,V)+i|E|((QA—A*Q)V,V)+ ((QB+ B*Q)V,V)

where A* is the transposed of A (which is real-valued) and B* is the transposed
conjugated of B.

Now, in view of the Paley-Wiener theorem, we require that E (¢ ; £) has, if
possible, the same behaviour as E (0 ; &) with respect to £ when | & | — 4 oo;
if we want to obtain this fact, it is clear from (12) that we must try to find a non-
zero matrix Q (¢ ; &) such that QA = A*Q. This is just what we have obtain-
ed; more precisely, the following theorem holds:

THEOREM 1. Given the hyperbolic operator L. with principal symbol P,,,
there exists a symmetric real-valued m X m matrix Q (¢t ; £) having the following
properties:

(13) the entries of Q(t ; &) are polynomials of m variables, whose coefficients
depend only on m, calculated in the m-tuple (H, ... H,)) defined by (7);

(14) Q (t; &) is weakly positive defined if L. is weakly hyperbolic, and it is
strictly positive defined if L is strictly hyperbolic;

(15)  Q@;E) A(t;8)=A*(t;E)Q(t;8)  for any (t;E).

Before we go on, let us consider a few examples.

ExampLE 1. (The case m =2).

If L is a second order operator, then

(16) A= (p g )-

In this case, the matrix Q given by Theorem 1 is

(17) Q8 — (2 Hi-I:ng - H1>

For instance, if we consider the equation

2

0 o2
(18) Lu:—-e—tzu—a(t)éﬁu——b(t)

o _—
otk
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then we have (see (7))
(19) H9=b0 5 5 HiH—a0).
Hence

2a(t) + b2 (t) b(2) I—ET
(20) Q(t;8) =
b(t) — |, | 2

and

(21) E(t;8=(QV,V)=Q2a(t)+ b2 @t)E|v|* 42| 2P—
—2Eb(t)Im (v ™).

We remark that, when b (¢) = 0, equation (18) reduces to a wave-type
equation and the energy E (¢ ;) reduces (save a multiplicative constant) to
the well-known energy E (¢ ;) =a (t) €2 | v |2+ | o' |2

ExampPLE 2 (the case m = 3).

If L is a third order operator, then

0 1 0
22)  A(t;%) = 0 0 1
H, H, H,

In this case, the matrix Q given by Theorem 1 is

H:—2H,H, HH,+3H, —H,
(23) Q@;9= H,H,+3H, 2H*4+2H, —2H,
— H, —2H, 3

For instance, if we consider the equation

3 3 3 3

G & 3 8 _
@) Lu=_ru—a(t) g5t —b0 5t —c®) 55 u—=0

then we have

@) HEH—e@ T D=0 Hli)—c@) g



118 Atti Acc. Lincei Rend. fis. ~ S. VIII, vol. LXXIX, 1985, fasc. 5

Hence
(260) E(;5=(QV,V)=
=@ —2a®c@E |v*+
+2@@)+o@)E [V P30 —
—2(@®b@®) +3c(®)&Im(vo’) +
+2b()E2Re (v0"") + 4a(t) £ Im (v 0”).

It is clear that in the strictly hyperbolic case, when Q is strictly positive
defined, any estimate regarding E (¢ ; &) obviously corresponds to an estimate
on V(t;é).

The situation is much more complicated in the weakly hyperbolic case, due
to possible degenerations of Q (¢ ; £); however, we shall take advantage, in this
case, of the fact that Q (¢ ; £) has the same regularity (in #) of the coeflicients
a, ;(t) of the principal part: in fact, if a, ; (¢)e C»= ([0, T]), so it is for Hy (¢ ;
£) (k=1...m) and then for Q (¢ ; £). In this sense, we see that the loss of

regularity of the characteristic roots T, (t ;l—%—;> is mot an intrinsic difficulty.
|

When L is weakly hyperbolic, we shall consider some perturbed energies
E (t;6)=((Q+ [,)V,V), where T is a suitable diagonal matrix with
constant coefficient such that Q 4 I, is strictly positive defined, and a key-
point of our construction will be made up by the evaluation (as a function of ¢)
of the ratio (Q'V,V)/((Q+ T)V,V), to estimate which we shall use
the regularity in ¢ of Q (¢ ; £) together with some consequences of the following

Lemma 1 ([5]). Let f(¢):[0, T] =R be a C'* function, with f(t) > 0.
Then there exists a constant C = C (|| fll;,) such that

/14
(27) lf@el=C [t (;’;‘(ﬁ t)] vie (0,T).

On the other hand, if the coefficients a, ;(¢) of the principal part of (1)
are only holder continuous, we shall consider some suitable perturbations
Q. (2;8) of Q(¢; &) in such a way that Q + T, is regular in ¢ and strictly po-
sitive defined; obviously, we shall estimate the error terms so introduced.

By means of the techniques exposed here, we get the following

TaeoreM 2 ([5]). Let us consider the operator L in (1). We suppose that

(28) L is weakly hyperbolic, i.e. » =0, where A\ is defined by (3).
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Let k be the greatest multiplicity of the roots <, (¢ ; ) of the principal symbol
P, (¢t ;7,8) defined by (2). Obviously, k is an integer such that 2 <k <m.
Then

1) if the coefficients a, ;(t) of the principal part of L (|v |+ j=m)
belong to Co= ([0, 'TY), the Cauchy problem (1) is well-posed in the Gevrey
spaces () for

o4

@t DE—1+1—a ’

(29) 1<s<1+

i) if the coefficients a, ;(t) of the principal part of L (|v |+ j= m)
belong to Ct= ([0, 'TY), the Cauchy problem (1) is well-poased in the Gevrey
spaces v for

. 1+ a
(30) 1§s<1—|—2—(k_1) .

We recall that a function f(x) : R” — R belongs to v§) if for any K com-
pact subset of R there exist A; and A, such that

(31) | Def(x) | < A AR ([ ] 1) xe K.

We point out that the results of Theorem 2, in the cases a, ;(f)e C>! ([0,
T]) or a,; (f)e CH1 ([0, T]) (| v | + j==m), have been already obtained, using
quite different techniques, by T. Nishitani, who has considered in [8] the case
of coefficients depending also on «x.

Moreover, the results of Theorem 2 generalize some previous results regard-
ing second order equations, which have been obtained in [2].

We remark that, if we suppose in Theorem 2 that k==1 (i.e. strict hyper-
bolicity), then by (29) we get that problem (1) is well-posed in v§) for 1 <s <
<1/1 — oc);‘this result has already been proved in the general case of regularly
hyperbolic systems with coeflicients depending on x and ¢ (see [3] and [4]),
while the same result had been previously obtained in some particular cases at
first in [1] and then in [7].

Let us also observe that we deduce by (30) that, if the coefficients a, ; (f)
of the principal part belong to C* ([0, T]), then problem (1) is well-posed in
v for 1 <s < kJ(k—1), and this result is not improvable, because, if s >
> k|(k — 1), problem (1) is not well-posed in y{) even in the case of constant
coefficients.

9. — RENDICONTI 1985, vol. LXXIX, fasc. 5
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