Silvana Franciosi, Francesco de Giovanni

Soluble Groups with Many Černikov Quotients

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1985_8_79_1-4_19_0>

RIASSUNTO. — Si studiano i gruppi risolubili non di Černikov a quozienti propri di Černikov. Nel caso periodico tali gruppi sono tutti e soli i prodotti semidiretti $H \times N$ con N gruppo abeliano elementare infinito e H gruppo irriducibile di automorfismi di N che sia infinito e di Černikov. Nel caso non periodico invece si riconduce tale studio a quello dei moduli a quozienti propri artiniani su un gruppo risolubile finito, e si fornisce una caratterizzazione di tali moduli.

§ 1. INTRODUCTION

If X is a class of groups, a group G is said to be just-non-X if it is not in X but all its proper quotients are X-groups.

Soluble just-non-polycyclic groups are studied in recent papers of Groves [2] and Robinson and Wilson [7], while just-infinite groups are considered in earlier papers of McCarthy [3] and Wilson [8].

Our aim here is to study soluble just-non-Černikov groups. Torsion soluble just-non-Černikov groups are described in a satisfactory way by Theorem A: such groups are precisely the semi-direct products $H \times M$, where M is an infinite abelian group of prime exponent and H is an irreducible infinite Černikov group of automorphisms of M. Theorem B reduces the study of non-torsion soluble just-non-Černikov groups to that of just-non-artinian modules over a finite soluble group, while Theorem C gives a description of such modules.

Finally in § 4 we construct many examples of just-non-Černikov groups, and we embed every Černikov group in a just-non-Černikov group.

Most of our notation is standard. In particular we refer to [5].

§ 2. TORSION SOLUBLE JUST-NON-ČERNIKOV GROUPS

We shall prove:

THEOREM A. A torsion soluble group G is just-non-Černikov if and only if $G = H \times M$ where M is an infinite abelian group of prime exponent and H is

(•) Pervenuta all'Accademia il 12 settembre 1985.
an infinite Černikov group which acts faithfully as an irreducible group of automorphisms of M.

Proof. Let G be just-non-Černikov; then the last non-trivial term A of the derived series of G is obviously a p-group (for some prime p). Denote by D the divisible part of A and by S the socle of D. If $S \neq 1$, D/S is in Min and so D is in Min, which is impossible. Therefore $D = 1$ and A is reduced. It follows that $A^p = 1$, since otherwise A/A^p is finite and A is finite, a contradiction; thus A is an infinite elementary abelian p-group. For each $a \in A \setminus \{1\}$, the subgroup $C_G(a)$ has infinite index in G, and so we have $B \leq C_G(a)$ where B/A is the finite residual of G/A. Since A/a^G is finite and B/A is divisible, we obtain

$$[A, B] \leq a^G,$$

and so $1 \neq [A, B] \leq \bigcap_{a \in A \setminus \{1\}} a^G = M$.

Obviously M is the unique minimal normal subgroup of G. Write $Q = G/M$. Then M is a simple Q-module and, if R denotes the finite residual of Q, we have $H^0(R, M) = 0$ since $|Q : R| < \infty$. By a theorem of Robinson ([6] Theorem B) it follows that $H^2(Q, M) = 0$ and so $G = H \times M$ for some $H \leq G$. If $C = C_G(M)$, we have $C = HM \cap C = M (H \cap C)$, and $H \cap C$ is normal in $HM = G$. Since $H \simeq G/M$ is Černikov it follows that $H \cap C = 1$ and $C_G(M) = M$. Therefore H acts faithfully as an irreducible group of automorphisms of M.

Conversely, if $G = H \times M$ has this structure, G is not a Černikov group, since M is infinite. If N is a non-trivial normal subgroup of G, we have M isomorphic to M and so $M \leq N$ and G/N is a Černikov group.

Remark. If M is an infinite abelian group of prime exponent p and H is an irreducible infinite Černikov group of automorphisms of M, then the finite residual R of H is a p'-group.

Proof. By contradiction suppose that the p-component K of R is non-trivial, and denote by K_n the subgroup of the elements of order $\leq p^n$ of K; then $K = \bigcup_{n \in N} K_n$ and every K_n is finite. By Theorem A the group $G = H \times M$ is just-non-Černikov and every $L_n = K_n \times M$ is nilpotent (see [5] Part 2, Lemma 6.34). Therefore $1 \neq Z(L_n) \triangleleft G$, so that $G/Z(L_n)$ is a Černikov group and $L_n/Z(L_n)$ is finite since it has finite exponent. Then L'_n is a finite normal subgroup of G, so that $L'_n = 1$ and each L_n is abelian. Therefore K acts trivially on M and $K = 1$.

In § 4 we will construct a torsion soluble just-non-Černikov group whose unique minimal normal subgroup is not a Hall subgroup.

Example. Let K be the algebraic closure of the field $GF(p)$; then the multiplicative group K^* of K is a direct product of groups of Prüfer type, one
for each prime other than \(p \). Let \(H \) be an infinite subgroup of \(K^* \) satisfying the minimal condition on subgroups, and let \(A \) be the additive group of the subfield of \(K \) generated by \(H \); then \(A \) is an infinite elementary abelian \(p \)-group on which \(H \) acts faithfully and irreducibly by multiplication. The split extension \(G = H \ltimes A \) is just-non-Černikov.

This example is essentially due to Carin.

§ 3. NON-TORSION SOLUBLE JUST-NON-ČERNIKOV GROUPS

The analysis of the Fitting subgroup and of the Fitting quotient is essential in describing non-torsion soluble just-non-Černikov groups. In fact we have:

Theorem B. (1) Let \(G \) be a non-torsion soluble just-non-Černikov group and let \(F \) be the Fitting subgroup of \(G \). Then \(Q = G/F \) is a finite group and \(F \) is a faithful just-non-artinian \(Q \)-module.

(2) Conversely, if \(Q \) is a finite soluble group and \(F \) is a faithful just-non-artinian \(Q \)-module, every extension of \(F \) by \(Q \) is a non-torsion soluble just-non-Černikov group with Fitting subgroup \(F \).

Proof. (1) Let \(A \) be the last non-trivial term of the derived series of \(G \), and let \(M \) be the intersection of all non-trivial \(G \)-invariant subgroups of \(A \). If \(M \neq 1 \), \(M \) is a minimal normal subgroup of \(G \) and \(G/C_G(M) \) is an irreducible locally finite group of automorphisms of \(M \), so that \(M \) is torsion (see [5] Part 1, Lemma 5.26), which is impossible. Therefore \(M = 1 \). Denote by \(B/A \) the finite residual of the Černikov group \(G/A \). If \(H \) is a non-trivial \(G \)-invariant subgroup of \(A \), the torsion group \(B/C_B(A/H) \) is finite (see [5] Part 1, Theorem 3.29.2) and so \(C_B(A/H) = B \) since \(B/A \) is divisible; it follows that \([A, B] \leq M = 1 \), and so \(A \leq Z(B) \) and \(B \) is nilpotent. Therefore \(G \) is nilpotent-by-finite; it follows that \(F \) is a torsion-free nilpotent group and \(Q \) is finite.

The group \(F/Z(F) \) is Černikov, so that \(F' = 1 \) and \(F \) is abelian. Then \(C_G(F) = F \) and \(F \) is a faithful \(Q \)-module. If \(K \) is a non-trivial \(Q \)-submodule of \(F \), we have \(K \triangleleft G \) and obviously \(F/K \) is an Černikov \(Q \)-module. Finally the \(Q \)-module \(F \) is non-artinian since \(G \) has no minimal normal subgroups.

(2) Let \(G \) be an extension of \(F \) by \(Q \). Then \(C_G(F) = F \) and so, if \(N \) is a non-trivial normal subgroup of \(G \), we have that \(N \cap F \) is a non-trivial \(Q \)-submodule of \(F \) and \(F/N \cap F \) is an Černikov \(Q \)-module. Thus \(G/N \cap F \) is in Min-\(n \), and so \(F/N \cap F \) is in Min (see [5] Part 1, Theorem 5.21); it follows that \(G/N \) is Černikov and \(G \) is a just-non-Černikov group. Since \(Q \) is finite, we obtain that \(F \) is torsion-free by Dietzmann's Lemma.

By (1) the Fitting subgroup \(F(G) \) of \(G \) is abelian, so that \(F(G) = C_G(F) = F \) and \(F(G) = F \).

From Theorem B it follows that it is sufficient to study faithful just-non-artinian modules over finite soluble groups. We recall that a \(Q \)-module \(A \) is said to have finite \(Q \)-rank \(r \) if every finitely generated \(Q \)-submodule of \(A \) can be...
generated by $s \leq r$ elements and r is the least positive integer with this property, while A is said to have finite total Q-rank if the sum of the Q-rank of A/T and of the Q-ranks of the A_p (for all primes p) is finite (where T is the torsion subgroup of A and A_p is the p-component of A). Here \mathcal{F} denotes the field of rational numbers.

Theorem C. Let Q be a finite soluble group and let A be a faithful Q-module. Then A is a just-non-artinian Q-module if and only if A is \mathbb{Z}-torsion-free, $A \otimes_{\mathbb{Z}} \mathcal{F}$ is a simple Q-module and the Q-sections of A have finite total Q-rank.

Proof. Let A be just-non-artinian. Since Q is finite, the abelian group A is obviously torsion-free. Let M be a non-trivial Q-submodule of $A \otimes_{\mathbb{Z}} \mathcal{F}$; then $M^* = \{a \in A | a \otimes 1 \in M\}$ is a non-trivial Q-submodule of A and there is an exact sequence

$$M^* \otimes_{\mathbb{Z}} \mathcal{F} \rightarrow A \otimes_{\mathbb{Z}} \mathcal{F} \rightarrow A/M^* \otimes_{\mathbb{Z}} \mathcal{F}$$

(see [1] Theorem 60.6). The abelian group A/M^* is in Min, since it is an artinian Q-module (see [5] Part 1, Theorem 5.21), and so

$$(A \otimes_{\mathbb{Z}} \mathcal{F})/\text{Im} x \simeq A/M^* \otimes_{\mathbb{Z}} \mathcal{F} = 0 \text{ and } M = A \otimes_{\mathbb{Z}} \mathcal{F} \text{ since } \text{Im} x \leq M.$$

If $x \in A \setminus \{0\}$, the Q-submodule xQ of A generated by x is a free abelian group of finite rank and, as above, the abelian group A/xQ is in Min, so that the torsion-free abelian group A has finite (total) rank. It follows that A has finite (total) Q-rank since each finitely generated Q-submodule is finitely generated as a subgroup of A. Let U/V be a Q-section of A with $V \neq 0$. Then A/V is an abelian group in Min and so U/V has finite total rank as an abelian group, and hence also finite total Q-rank.

Conversely let B be a non-trivial Q-submodule of A. We have $0 \neq B \simeq B \otimes_{\mathbb{Z}} \mathcal{F} \leq B \otimes_{\mathbb{Z}} \mathcal{F}$ since B is torsion free, and so $B \otimes_{\mathbb{Z}} \mathcal{F} \neq 0$. There is an exact sequence

$$B \otimes_{\mathbb{Z}} \mathcal{F} \rightarrow A \otimes_{\mathbb{Z}} \mathcal{F} \rightarrow A/B \otimes_{\mathbb{Z}} \mathcal{F}$$

and so $A/B \otimes_{\mathbb{Z}} \mathcal{F} = 0$ since $\text{Im} x$ is a non-trivial Q-submodule of the simple Q-module $A \otimes_{\mathbb{Z}} \mathcal{F}$. If T/B is the torsion subgroup of A/B, it follows that $A/T \otimes_{\mathbb{Z}} \mathcal{F} = 0$, and so $A/T = 0$ since it is torsion-free. Therefore A/B is a torsion group and it has finitely many non-trivial primary components since it has finite total Q-rank. Let $H = \langle x_1, \ldots, x_n \rangle$ be a finitely generated subgroup of A; since $H^Q = x_1 Q \cdot \ldots \cdot x_n Q$ is a finitely generated Q-submodule of A, there exist y_1, \ldots, y_r in A such that $H^Q = y_1 Q \cdot \ldots \cdot y_r Q$ where r is the Q-rank of A. If $|Q| = q$, then H^Q is a free abelian group of rank $\leq r q$. Therefore A has finite rank as an abelian group, and so the abelian group A/B is in Min. Since A is torsion-free, it follows that A is a just-non-artinian Q-module. \[\blacksquare\]
REMARK 1. Every soluble non-torsion just-non-Černikov group G is a residually finite minimax group.

Proof. The Fitting subgroup F of G is torsion-free abelian and $|G:F| < \infty$, so that, if $x \in F \setminus \{1\}$, x^G is a free abelian group of finite rank and F/x^G is in Min; then F is a minimax group and it is residually finite (see [4] Lemma 2.21). It follows that G is a residually finite minimax group.

REMARK 2. Let G be a group with $Z(G) \neq 1$. Then G is just-non-Černikov if and only if it is isomorphic with a non-trivial subgroup of \mathcal{A}_π (the additive group of all rational numbers whose denominators are π-numbers) for some finite set π of prime numbers.

Proof. Suppose G just-non-Černikov. Then $G/Z(G)$ is a Černikov group and so G' is Černikov (see [5], Part 1, Theorem 4.23). Therefore $G' = 1$ and G is a torsion-free abelian group of rank 1, and so it is isomorphic with a subgroup G^* of $\mathcal{A} (+)$. If $m/n \in G^* \setminus \{0\}$, the set π of the prime numbers which either divide n or are orders of elements of $G^*/\langle m/n \rangle$ is finite, since $G^*/\langle m/n \rangle$ is in Min. It is easily proved that $G^* \leq \mathcal{A}_{\pi}$.

EXAMPLE. If π is a finite set of prime numbers and α is the automorphism $x \mapsto -x$ of \mathcal{A}_{π}, the group $\langle \alpha \rangle \times \mathcal{A}_{\pi}$ is a soluble non-torsion just-non-Černikov group which is non-abelian.

§ 4. WREATH PRODUCTS AND JUST-NON-ČERNIKOV GROUPS

In this section we give methods to construct many examples of just-non-Černikov groups.

4.1. Let H be a non-abelian just-non-Černikov group, and let K be a finite group. Then $G = H \wr K$ is just-non-Černikov.

Proof. If N is a non-trivial normal subgroup of G, the intersection of N with each component H^i of the base group B is non-trivial, since $Z(H) = 1$. Therefore every $H^i(N \cap B)/N \cap B$ is a Černikov group and so $B/N \cap B$ is Černikov. It follows that G/N is a Černikov group since $|G:B| < \infty$.

4.2. Let H be a non-abelian simple group, and let K be an infinite Černikov group. Then $G = H \wr K$ is just-non-Černikov.

Proof. Each non-trivial normal subgroup N of G contains the base group of G, and so G/N is Černikov. Moreover G is not a Černikov group since K is infinite.

EXAMPLE. Let H be a soluble torsion just-non-Černikov group whose unique minimal normal subgroup has exponent p, and let K be a finite soluble group whose order is divisible by p. Then $G = H \wr K$ is a soluble torsion
just-non-Černikov group whose unique minimal normal subgroup is not a Hall subgroup.

By 4.2 it follows that every Černikov group is a subgroup and a quotient of a just-non-Černikov group.

4.3. Let $G = H \wr K$ be a just-non-Černikov group with H non-simple. Then H is just-non-Černikov and K is finite.

Proof. Let B be the base group and denote by L a proper non-trivial normal subgroup of H; then $L \triangleleft B$ and $L^G = L^K$. Since G/L^G is Černikov, also $B/L^K \cong \text{Dr } H^k/L^k$ is Černikov, and from $H^k/L^k \neq 1$ it follows that K is finite. We have $H \bigcap L^K = L$ and so $H/L \cong HL^K/L^K \leq G/L^K$ is a Černikov group. Finally H is not a Černikov group since G is not Černikov.

Our last result is about the cardinality of soluble just-non-Černikov groups

4.4. A soluble just-non-Černikov group G is countable.

Proof. If G is non-torsion the result follows from Remark 1. Suppose that G is a torsion group and so $G = H \times M$ as in Theorem A. Then H is countable since it is Černikov and M is countable because it is an irreducible (and so cyclic) \mathbb{Z}_pH-module.

REFERENCES