ENRICO CASADIO TARABUSI

Analyticity of the Spectral Multi-Function in Topological Algebras

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1985_8_78_1-2_13_0>

RIASSUNTO. — Se \(f : \Omega \rightarrow \mathcal{H} \) è un’applicazione olomorfa di un dominio di \(\mathbf{C} \) in un’algebra topologica che gode di certe proprietà, si dimostra che la multifunzione “spettro” \(\sigma_f : \Omega \rightarrow 2^\mathbf{C} \) è analitica secondo Oka.

1. INTRODUCTION

Let \(\Omega \) be a domain in \(\mathbf{C} \), \(\mathbf{B} \) a complex Banach space, \(\mathcal{L}(\mathbf{B}) \) the complex Banach algebra of continuous endomorphisms of \(\mathbf{B} \), \(2^\mathbf{C} \) the family of subsets of \(\mathbf{C} \), \(\sigma : \mathcal{L}(\mathbf{B}) \rightarrow 2^\mathbf{C} \) the multifunction “spectrum” (mapping \(x \in \mathcal{L}(\mathbf{B}) \) into its spectrum \(\sigma(x) \)). According to [7, p. 371, Corollary 3.3.], if \(f : \Omega \rightarrow \mathcal{L}(\mathbf{B}) \) is a holomorphic map, then the multifunction \(\sigma \circ f : \Omega \rightarrow 2^\mathbf{C} \) is analytic in the sense of Oka (i.e. \(\sigma \circ f \) is upper semi-continuous and each connected component of the open set \(D = \{(\lambda, z) \in \Omega \times \mathbf{C} | z \in \sigma(f(\lambda))\} \) in \(\mathbf{C}^2 \) is a domain of holomorphy). A partial converse to the above statement is also proved in the same paper [p. 365, Theorem IV.]: given an analytic multifunction \(\sigma : \Omega \rightarrow 2^\mathbf{C} \) (taking its values among the non-empty compact subsets of \(\mathbf{C} \)), there exist a complex Hilbert space \(\mathcal{H} \) and a holomorphic map \(f : \Omega \rightarrow \mathcal{L}(\mathcal{H}) \) such that \(s = \sigma \circ f \) on \(\Omega \), provided \(\Omega \) is bounded and \(s \) is uniformly bounded on \(\Omega \) (i.e. \(\sup_{\lambda \in \Omega} \max_{z \in \sigma(f(\lambda))} |z| < \infty \)). We shall show here that the Oka-analyticity of the spectrum is a property of a class of topological algebras which is larger than that of Banach algebras.

2. SEMI-CONTINUITY OF THE SPECTRUM

We shall give first a characterization of complex topological algebras whose spectrum is upper semi-continuous, thus establishing the reverse implication of [11, p. 63, Lemma 5.2.]. Let us recall some definitions.

DEFINITION 1. Let \(\mathcal{A} \) be a complex topological algebra. A multifunction \(\Sigma : \mathcal{A} \rightarrow 2^\mathbf{C} \) is said to be upper semi-continuous (u.s.c.) if, for any \(x \in \mathcal{A} \) and any neighbourhood \(A \) of \(\Sigma(x) \) in \(\mathbf{C} \), there exists \(U \in \mathcal{N}_0 \) (\(\mathcal{N}_0 \) being the family of \(0 \)-neighbourhoods in \(\mathcal{A} \)) such that \(y \in \mathcal{A} \) implies \(\Sigma(x + y) \subseteq A \).

(*) Scuola Normale Superiore di Pisa.
Let \(\mathcal{U} \) be a complex algebra. Set \(x \circ y = x + y - x \cdot y \), for any \(x, y \in \mathcal{U} \); an element \(x \in \mathcal{U} \) is quasi-regular (q.r.) if a (unique) \(x' \in \mathcal{U} \) exists so that \(x \circ x' = x' \circ x = 0 \) (\(x' \) is the quasi-inverse of \(x \)); and \(\mathcal{U}' \) is the set of q.r. elements of \(\mathcal{U} \). If \(\mathcal{U} \) has an identity element \(e \) (i.e. \(\mathcal{U} \) is unital), then \(e - x \circ y = (e - y) \) for every \(x, y \in \mathcal{U} \): thus \(x \) is q.r. if and only if \(e - x \) is invertible, in which case \((e - x)^{-1} = e - x' \). So, if \(\mathcal{U}^{-1} \) is the set of invertible elements in \(\mathcal{U} \), then \(\mathcal{U}^{-1} = e - \mathcal{U}' \).

The spectrum \(\sigma_{\mathcal{U}}(x) = \sigma(x) \) in \(\mathcal{U} \) of an element \(x \in \mathcal{U} \) is thus defined: \(\sigma(x) \setminus \{0\} = \{z \in \mathbb{C}^* | \frac{x}{z} \in \mathcal{U}'\} \); and \(0 \in \sigma(x) \) if and only if \(\mathcal{U} \) is unital and \(x \in \mathcal{U}^{-1} \). If \(\mathcal{U} \) is unital we have \(\sigma(x) = \{z \in \mathbb{C} | ze - x \in \mathcal{U}^{-1}\} \).

Definition 2. A complex topological algebra \(\mathcal{U} \) is said to be Q if \(\mathcal{U}' \) (or, equivalently, \(\mathcal{U}^{-1} \) if \(\mathcal{U} \) is unital) is open in \(\mathcal{U} \).

If \(\mathcal{U} \) is a complex algebra without identity element, let \(\hat{\mathcal{U}} \) be the complex algebra \(\mathcal{U} \oplus \mathbb{C} \) where \((x, \mu), (y, \nu) = (x \cdot y + \mu y, \mu y) \), for any \((x, \mu), (y, \nu) \in \hat{\mathcal{U}} \). Thus \(\mathcal{U} \) is unital, \((0,1)\) being its identity element; and \(\hat{\mathcal{U}} \) is identified with its two-sided regular maximal ideal \(\mathcal{U} \times \{0\} \). Moreover \(\hat{\mathcal{U}}' = \left\{ (x, \mu) \in \hat{\mathcal{U}} | \mu \neq 1, \frac{x}{1 - \mu} \in \mathcal{U}' \right\} \) (in particular, \(\hat{\mathcal{U}}' \cap \mathcal{U} = \mathcal{U}' \)): if \((x, \mu) \in \mathcal{U}' \), then \((x, \mu)' = \left(\frac{1}{1 - \mu} \left(x \right)' - \frac{\mu}{\mu - 1} \right) \) (in particular, \((x, 0)' = (x', 0) \) for every \(x \in \mathcal{U}' \)). So \(\sigma_{\hat{\mathcal{U}}}(x, \mu) = \sigma_{\mathcal{U}}(x) + \mu \) for every \((x, \mu) \in \hat{\mathcal{U}} \) (in particular, \(\sigma_{\hat{\mathcal{U}}}(x, 0) = \sigma_{\mathcal{U}}(x) \) for every \(x \in \mathcal{U} \)). It is thus evident that, if \(\mathcal{U} \) is also a topological algebra (\(\hat{\mathcal{U}} \) has then the product topology, and \(\mathcal{U} \) is closed in \(\hat{\mathcal{U}} \), \(\mathcal{U} \) is Q if and only if \(\hat{\mathcal{U}} \) is; and the multifunction spectrum \(\sigma_{\hat{\mathcal{U}}} : \mathcal{U} \to 2^\mathbb{C} \) is u.s.c. if and only if \(\sigma_{\hat{\mathcal{U}}} : \mathcal{U} \to 2^\mathbb{C} \) is. Moreover, the map \(x \mapsto x' : \mathcal{U}' \to \mathcal{U} \) is continuous if and only if \((x, \mu) \mapsto (x, \mu)' : \mathcal{U}' \to \mathcal{U} \) is; this fact will be used in Theorem 6. below. Therefore we shall only consider unital algebras in our proofs.

Proposition 3. Let \(\mathcal{U} \) be a complex topological algebra. Then \(\mathcal{U} \) is Q if and only if the multifunction spectrum is u.s.c. on \(\mathcal{U} \).

Proof. If \(\mathcal{U} \) is not Q, then (see [4, p. 77, Lemma E.2.]) \(\mathcal{U}' \) has empty interior. Therefore, for any \(U \in \mathcal{N}_0 \) there exists \(x \in U \setminus \mathcal{U}' \), that is to say, \(1 \in \sigma(x) \). But \(\sigma(0) = \{0\} \).

Conversely, suppose \(\mathcal{U} \) is (unital and) Q, and let \(x \in \mathcal{U} \); then (see [4, p. 77, Lemma E.3.]) \(\sigma(x) \) is a compact subset of \(\mathbb{C} \). It will suffice to show that for any \(\varepsilon > 0 \) there exists \(U \in \mathcal{N}_0 \) such that \(y \in U \) implies \(\sigma(x + y) \subseteq A_\varepsilon \), where \(A_\varepsilon \) is the open set \(\{z \in \mathbb{C} | \text{dist}(z, \sigma(x)) < \varepsilon\} \). (\(A_\varepsilon \) is empty if so is \(\sigma(x) \)).
Let us first prove the existence of $R > 0$ and $U \subseteq N_0$ such that $y \in U \implies G(x + y) \subseteq B(0, R)$ (we shall denote with $B(0, R)$ the open ball for $z \in C \mid |z - z| < r$). Since $0 \in \mathcal{U}'$, there exists $V_\infty \subseteq N_0$ such that $V_\infty \subseteq \mathcal{U}'$. Therefore there exist: a balanced $U_\infty \subseteq N_0$ such that $U_\infty + U_\infty \subseteq V_\infty$, and a positive $r_\infty < 1$ such that $w \in B(0, r_\infty)$ implies $wx \in U_\infty$. Set $R = \frac{1}{r_\infty}$: if $y \in U$ and $x \in C \setminus B(0, R)$, we have $\left| \frac{1}{z} \right| < \frac{1}{R} = r_\infty \leq 1$, so $\frac{x + y}{z} = \frac{1}{z}x + \frac{1}{z}y \in U_\infty + \frac{1}{z}U_\infty \subseteq U_\infty + U_\infty \subseteq V_\infty \subseteq \mathcal{U}'$, that is, $z \in \sigma(x + y)$.

Now let $\varepsilon > 0$, and set $K = \overline{B(0, R) \setminus A_x}$. If $z \in K$, then $x - z \in \mathcal{U}^{-1}$, therefore $V_z \subseteq N_0$ exists so that $x - ze + V_z \subseteq \mathcal{U}^{-1}$. As above, let $U_z \subseteq N_0$ be such that $U_z + U_z \subseteq V_z$; and let $r_z > 0$ be such that $w \in B(0, r_z)$ implies $we \in U_z$. Thus, if $y \in U_z$ and $x \in B(z, r_z)$, then $(x + y) - ze = (x - ze) + y + (z - z)e \in (x - ze) + U_z + U_z \subseteq x - ze + V_z \subseteq \mathcal{U}^{-1}$, that is, $z \in \sigma(x + y)$.

But K is compact, so from its open covering $\{B(z_j, r_{z_j})\}_{j=1,\ldots,N}$ a finite sub-covering $\{U_j\}_{j=1,\ldots,N}$ (where $z_1, \ldots, z_N \in K$) can be extracted. Set $U = U_\infty \cap \left(\bigcap_{j=1}^{N} U_j \right)$: then $U \subseteq N_0$, and $\sigma(x + y) \subseteq A_z$ whenever $y \in U$.

Remark 4. The "if" part of Proposition 3. can be so sharpened: if \mathcal{U} is not Q, then for any $x \in \mathcal{U}$, $z \in C$, and $U \subseteq N_0$, there exists $y \in U$ such that $z \in \sigma(x + y)$. In fact (we assume $z \neq 0$: the case $z = 0$ being straightforward) $V = \frac{1}{z}U$ is still in N_0: if $y_1 \in V$ is such that $\frac{x}{z} + y_1 \in \mathcal{U}'$, let $y = zy_1 \in \mathcal{U}' = U$. Thus $\frac{x + y}{z} = \frac{x}{z} + y_1 \in \mathcal{U}'$, that is, $z \in \sigma(x + y)$.

3. THE MAIN RESULT

Let us start with a definition.

Definition 5. A (complex) topological algebra \mathcal{U} is said to have continuous quasi-inversion if it is Q, and the map $x \mapsto x' : \mathcal{U} \rightarrow \mathcal{U}$ (or, equivalently if \mathcal{U} is unital, $x \mapsto x^{-1} : \mathcal{U}^{-1} \rightarrow \mathcal{U}$) is continuous.

For example, a locally multiplicatively-convex Q-algebra has continuous quasi-inversion: cf. [4, p. 10, Proposition 2.8].

Theorem 6. Let \mathcal{U} be a complex locally convex algebra having continuous quasi-inversion. Then, for any domain Ω in C and any holomorphic map $f : \Omega \rightarrow \mathcal{U}$, the multifunction $\sigma \circ f : \Omega \rightarrow 2^C$ is Oka-analytic.

Remark 7. a) As is customary, no assumption is made on the continuity of the product in a topological algebra, or on the completeness of the algebra itself.
b) A map $f : \Omega \to \mathcal{U}$ is said to be holomorphic when, for any $z \in \Omega$, the limit $f'(z) = \lim_{h \to 0} \frac{f(z + h) - f(z)}{h}$ exists in \mathcal{U} (the completion of \mathcal{U} as a topological vector space; see [2, p. 59, Definition 2.]). For other definitions, see [5, p. 22, Théorème 1.2.2.]; however, in the present case they are all equivalent to ours.

Proof of Theorem 6. By Proposition 3. and the continuity of f, the multifunction $\sigma \circ f$ is u.s.c. on Ω (besides, D is then open in \mathbb{C}^n). We shall assume \mathcal{U} to be unital (cfr. § 2.). Let $(\lambda_0, z_0) \in (\Omega \times \mathbb{C}) \setminus D$ (so $z_0 \in \sigma (f (\lambda_0))$) and $B = \mathcal{U} (x_0)$ be the subalgebra of \mathcal{U} of quotients of polynomials in $x_0 = f (\lambda_0)$, with complex coefficients, by invertible polynomials of the same kind. Obviously if such a quotient has an inverse, that is still a quotient of the same kind, that is, $\mathcal{U}^{-1} \cap B = B^{-1}$. Thus the complex unital locally convex algebra B is also \mathcal{Q}, and $x \mapsto x^{-1} : B^{-1} \to B$ is continuous, i.e. B has continuous quasi-inversion. Moreover B is commutative. By Zorn's lemma, there exists a maximal ideal m in B containing $y_0 = ze - x_0$ (of course m is regular). Since B is \mathcal{Q}, m is also closed in B (cfr. [4, p. 77, Lemma E. 4.]); and, since B has the other properties listed above, the Gel'fand-Mazur theorem (see [3, p. 81]) can be applied to infer that the topological algebra B/m is isomorphic to \mathbb{C}. In other words we have a non-zero continuous linear multiplicative functional $\varphi : B \to \mathbb{C}$ such that $\varphi (y_0) = 0$. So for every $z \in \mathbb{C} \setminus \sigma (x_0)$ we have

$$\varphi (\left[ze - x_0 \right]^{-1}) = \frac{1}{\varphi (ze - x_0)} = \frac{1}{(z - z_0) \varphi (z) - \varphi (y_0)} = \frac{1}{z - z_0}.$$

We can now apply to φ in \mathcal{U} the Hahn-Banach theorem, \mathcal{U} being locally convex. Thus, let $\tilde{\varphi} : \mathcal{U} \to \mathbb{C}$ be a continuous linear (but not necessarily multiplicative) functional that extends φ; and set $\psi : D \to \mathcal{U}$ by $\psi (\lambda, z) = \left[ze - f (\lambda) \right]^{-1}$ for every $(\lambda, z) \in D$. If we prove that $b = \tilde{\varphi} \circ \psi : D \to \mathbb{C}$ is holomorphic, then we shall apply the criterion given by [8, p. 14, Lemma 2.] to conclude that each connected component of D is a domain of holomorphy.

Let $J : \mathcal{U} \times \mathcal{U} \to \mathcal{U}$ be the Jordan product $J (x, y) = \frac{x \cdot y + y \cdot x}{2}$, for any $x, y \in \mathcal{U}$ having continuous quasi-inversion, by [10, p. 1686, Proposition 1.] J is jointly continuous. Thus if $(\lambda, z) \in D$ the following limit exists:

$$\frac{\partial \psi}{\partial z} (\lambda, z) = \lim \frac{\psi (\lambda, z + h) - \psi (\lambda, z)}{h} = \lim \frac{[(z + h) e - f (\lambda)]^{-1} - [ze - f (\lambda)]^{-1}}{h} = - \lim J \left([(z + h) e - f (\lambda)]^{-1}, [ze - f (\lambda)]^{-1} \right) = - J \left([ze - f (\lambda)]^{-1}, [ze - f (\lambda)]^{-1} \right) = - [ze - f (\lambda)]^{-2}$$
(we have used the equality $x^{-1} - y^{-1} = \frac{x^{-1} \cdot (y - x) \cdot y^{-1} + y^{-1} \cdot (y - x) \cdot x^{-1}}{2}$, true for any $x, y \in \mathcal{U}^{-1}$).

To prove the holomorphicity of ψ in the variable λ, we need to extend J to $\tilde{J} : \mathcal{U} \times \mathcal{U} \to \mathcal{U}$ in a jointly continuous fashion. Indeed, for every $y \in \mathcal{U}$ the map $J_y : \mathcal{U} \to \mathcal{U}$ given by $J_y (x) = J (x, y)$ is continuous and linear, therefore it extends to a continuous linear map $\tilde{J}_y : \mathcal{U} \to \mathcal{U}$: set $\tilde{J} (x, y) = \tilde{J}_y (x)$ for any $(x, y) \in \mathcal{U} \times \mathcal{U}$. Let now \bar{U} be a closed 0-neighbourhood in \mathcal{U} (a topological vector space always admits a fundamental system of 0-neighbourhoods, cfr. [6, p. 16, 1.3.]): then $U = \bar{U} \cap \mathcal{U}$ is a 0-neighbourhood in \mathcal{U}, thus a 0-neighbourhood V in \mathcal{U} exists so that $J (V \times V) \subseteq U$. If \bar{V} is the closure of V in \mathcal{U}, then \bar{V} is a 0-neighbourhood in \mathcal{U} (cfr. [6, p. 17, 1.5.]), and $\tilde{J} (\bar{V} \times V) \subseteq \bar{U}$: in fact, if $y \in V$, then $J_y (V) \subseteq U$, whence $\tilde{J}_y (V) \subseteq \bar{U}$.

Now let $(\lambda, z) \in D$, and set $g : B (0, \delta) \to \mathcal{U}^{-1} : g (h) = ze - f (\lambda + h)$ ($\delta > 0$ small enough): g is holomorphic in 0. If $a (h) = \frac{g (h) - g (0)}{h}$ for every $h \in B (0, \delta)$, then an easy computation leads to:

$$
g (h)^{-1} - g (0)^{-1} = \frac{g (h)^{-1} \cdot a (h) \cdot g (0)^{-1} + g (0)^{-1} \cdot a (h) \cdot g (h)^{-1}}{h}
$$

$$
= J \left(\frac{a (h)}{J (g (h)^{-1}, g (0)^{-1})} - J \left(\frac{a (h)}{J (g (h)^{-1}, g (0)^{-1})} \right), g (0)^{-1} \right) -
$$

$$
- J \left(J \left(\frac{a (h)}{J (g (h)^{-1}, g (0)^{-1})} \right), g (h)^{-1} \right).
$$

Since $\lim_{h \to 0} g (h)^{-1} = g (0)^{-1} \in \mathcal{U}$, while $\lim_{h \to 0} a (h) = g' (0) \in \mathcal{U}$, the following limit exists in \mathcal{U}:

$$
\frac{\partial \psi}{\partial \lambda} (\lambda, z) = \lim_{h \to 0} \frac{g (h)^{-1} - g (0)^{-1}}{h} = J \left(g' (0), g (0)^{-2} \right) -
$$

$$
- 2 \tilde{J} \left(J \left(g' (0), g (0)^{-1} \right), g (0)^{-1} \right)
$$

(if we could expand \tilde{J}, the latter expression would of course equal $-g (0)^{-1} \cdot g' (0) \cdot g (0)^{-1}$).

Therefore, b is separately holomorphic in D: (it being continuous on D) b is then (jointly) holomorphic in D.

Theorem 6. has several consequences. Among them are the logarithmic pluri-sub-harmonicity of several functions of the spectrum in \mathcal{U}, such as the spectral radius, any k-th spectral diameter (with $k \in \mathbb{N}$), the spectral capacity, and many others. Also, we have: the pluri-analyticity of isolated eigenvalues,
and, more generally, of spectral sets; the finite scarcity and countable scarcity theorems; and so on. For deeper analyses of the consequences of the Oka-analyticity, see e.g. [1], [9], [11], and the literature cited there.

BIBLIOGRAPHY

