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Fisica matematica. — Existence of a quasi-continuous distribution oj 
bound state level sub-bands at an accumulation or inversion layer of 
semiconductor-insulator interfaces. Nota di ERCOLE D E CASTRO e PIERO 

OLIVO.(*), presentata (## ) dal Corrisp. E. D E CASTRO. 

RIASSUNTO. — Con riferimento alla quantizzazione nella direzione ortogonale al­
l'interfaccia, viene sviluppato un semplice procedimento approssimato per stabilire se 
esiste un intervallo di livelli quasi continui corrispondenti a stati legati allo strato di ac­
cumulazione di una giunzione isolante-semiconduttore opportunamente polarizzata. 

Il procedimento, in quanto determina la distanza fra tali livelli, ne dà anche la den­
sità, quindi la distribuzione delle sottobande di stati legati nel problema tridimensionale. 

Il procedimento è utile in una varietà di problemi connessi ai suddetti strati di ac­
cumulazione, ad esempio nello studio dell'iniezione di elettroni attraverso l'ossido di 
gate di un dispositivo MO S per effetto Fowler-Nordheim. Lo stesso procedimento può 
essere utilizzato anche per gli strati di inversione. 

INTRODUCTION 

Accumulation and inversion layers at semiconductor-insulator interfaces are 
of great theoretical and practical interest. In the first case because of the phy­
sical phenomena that can be investigated [1-10], in the second because they are 
basic in the performance of such important electronic devices like the MOS in 
very large scale integrated circuits. 

Thus it is easily understood why, in recent years, thanks to the impulse 
of Microelectronics, a great deal of research has been devoted to thorough inve­
stigation of the Si—Si02 interface of MOS structures. 

One of the most interesting phenomena in which accumulation or inversion 
layers are involved is related to Fowler-Nordheim. i.e. high-field tunnel injec­
tion of electrons from the Silicon substrate to the metal gate of an MOS device 
through a Si02 film less than 100 Â thick [11-16]. 

Experiments on such phenomena are generally made on MOS capacitors, 
where injection takes place from a Silicon accumulation layer to a metal gate 
or a heavily doped polycrystalline Silicon film. 

Thus, any theory aiming at interpretation of the transport phenomena 
through the thin dielectric Si02 film has to start from accurate knowledge of 
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40136 Bologna. 
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the injection level distribution from the Silicon accumulation layer. To such 
a layer we shall refer from now on, though the method is equally valid for an 
inversion layer. 

It is well known that accumulation layers at Si—Si02 interfaces can be very 
thin and this can strongly influence distribution of the levels of their bound 
states, while leaving those of bulk states almost unperturbed. 

Referring to quantization in the x direction orthogonal to the interface, 
one says the energy eigenvalues E .̂ are " quasi-continuous " when their spacing 
AE^ <̂  kT , while they are in the " quantum limit " when AE^ > kT. 

The so-called " quantum effects " refer to the latter case. It is also well 
known that a uniform sub-band of bound state levels of the three-dimensional 
problem [1] is associated to each eigenvalue E^ < Ec (Ec being the lower edge 
of the unperturbed conduction band of the semiconductor). 

Exact evaluation of the distribution of the levels E .̂ < Ec is however very 
difficult, as we shall soon show. 

A number of Authors have computed them with simplifying assumptions 
as to the nature of the semiconductor or its working conditions (e.g. low tem­
peratures), they being interested in the broad features of the inherent physical 
phenomena [1-10]. Others, in the course of investigations on the aforemen­
tioned transport problems in MOS devices, have made " a priori " simplifying 
assumptions on the distribution of the levels. The quasi-continuous case, which 
is customary in the theory of semiconductor devices and is plausible when the 
layer is not very thin, is often assumed. On the contrary, being interested 
in the case of thin layers, a single sub-band of bound state levels (i.e. the E^ < 
< Ec only) to roughly evaluate quantum effects in Silicon at any temperature 
[11] has been recently assumed. 

However, as far as the Authors know, no one has given criteria to ascertain 
the case for any given semiconductor and potential § = § (x), nor methods to 
compute the density of the eigenvalues E^ < Ec when their spacing is so small 
(e.g. IO-10 eV as compared with the 1.12 eV energy gap in Silicon) that direct 
numerical evaluations, for instance by Sommerfeld-like conditions in the WKB 
effective-mass approximation, fail to be manageable. The present work is 
devoted to this problem. 

OUTLINE OF THE METHOD 

Let us consider the electrons of the conduction band of an /z-type semi­
conductor and suppose x = 0 to be the plane interface between the semicon­
ductor and the insulator of a metal-insulator-semiconductor structure. The x 
axis will be oriented as in fig. 1, where Ec is the edge of the unperturbed 
semiconductor conduction band, while § = cj) (x) is the electrostatic potential 
in the one electron effective mass approximation. Then, denoting q the abso­
lute value of the electron charge and assuming E c = 0 , V (x) = — q § (x) is 
the potential energy of an electron. 
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Insulator 

n - t y p e 
Semiconductor 

Fig. 1. 

Let us now suppose that a voltage VG be applied (see fig. 1) such that 
§s = $ (0) > 0 . In the semiconductor, at the interface with the insula­
tor, an accumulation layer will then be formed. Therefore, the potential energy 
V (x) , which is '' a priori " unknown, can be assumed as a monotonically de­
creasing function inside the semiconductor. 

Neglecting spin-orbit interaction, a stationary one-electron state is describ­
ed by the normalized orbital 

(1) ty (x,y, z) ==-==^f(x > E *) e x P I* ( 
7 2 7T , 2 7T 
1 Yy + r z * 

and by the spin orientation. Periodic boundary conditions are assumed in 
the y and z directions, along which the lengths of the semiconductor slab are 
Y and Z respectively. The normalized factor f=f(x , Ex) satisfies the Schrò-
dinger equation 

(2) 
dx2 h* 

• V ( * ) ] / = 0 

with the boundary conditions 

(3) / ( 0 , E , ) = / ( - X , E , ) = 0 

which are justified because the injection of electrons into the dielectric is con­
sidered a small perturbation and the tails of the wavefunctions beyond the plane 
x = 0 and behind the plane x — — X , are neglected. Obviously X is the 
length of the semiconductor in the x direction, while / , r in (1) are positive 
or negative integers and mx,rny, mz the effective masses of the electrons for 
states near a given minimum of the energy function in the conduction band. 
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The energy corresponding to the orbital (1) is given by 

E^,+i[4(^,+i(i)%.]. 
Varying / and r , for a given E ,̂ < 0 , a sub-band of bound states is describ­

ed, the density of which turns out to be a constant. 
Evaluation of the eigenfunctions and eigenvalues of (1) is a very difficult 

task because V (x) is unknown, being determined by the unknown occupied 
electronic states themselves. 

Therefore, the system of Schròdinger equations (2) and the so called Pois­
son equation have to be solved by the self-consistent Hartree method, as Stern 
did for the simpler case of inversion layers where the population of bulk states 
can be neglected [6], or in some other way. 

The Authors did it in the WKB approximation [17], which is always feasible 
in the broad class of problems concerning practical applications of accumulation 
layers. Within this approximation the expression of f(xy*Ex) is known as a 
function of cj> (x) . Hence, one has to solve only the Poisson equation, which 
takes a rather complicated integro-differential form easily reduced to a pure 
integral equation. Approximate solutions of the last equation can be found by 
the Ritz method, i.e. by conveniently chosen parametrized expressions of cj> (x), 
minimizing the mean square error between the two sides of the integral equa­
tion. Therefore (j> (x) becomes specified by a certain number of numerical 
parameters (generally two). The search for cj> (x) is then reduced to determi­
nation of these parameters, numerically effected by oriented trials, <j) (x) being 
considered a known function at each trial. 

Therefore, within the WKB-Ritz approximation, the problem of recogniz­
ing whether a quasi-continuous band of levels E .̂ < 0 exists can be faced for 
a given V (x) == — q § (x) at each iteration. Such a problem, which can ob­
viously be of interest in much more general contexts, will now be easily solved, 
subject only to very understandable approximations. At the same time the 
density of the levels will be immediately computed even when their direct nu­
merical evaluation by the appropriate Sommerfeld-like condition 

(5) 2 f l / 2 « : [ E « - V ( * ) ] d * = (n + | - ) A 

becomes impractical because of their extremely narrow spacing. In equation 
(5) xn represents the turning point corresponding to the negative eigenvalue E^w 

(see figure 1), given by 

(6) V ( ^ ) = E ^ , 

while h is obviously the Plank constant. 
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Letting 

C7) A E ^ = E^, n + 1 — Exn 

L\Xn = xn+:jL xn , 

one can derive from (5) that 

o • 

(n + 1 + I ) h = 2 f j / 2 < [ E „ + 1 - V ( * ) ] dx = 
xn+l 

= 2J J |/2 «î [ AEW + E„-V(x)] d* + 
« + 1 

(8) 0 

+ \{\/2m:[tâxn + Exn-V(x)]-}/2m:[Kn-V(x)])àx + 

n 
0 

+ jy2«:[E^-V(*)]d* 

If AE^ is small enough to allow the assumption (see figure 1) 

(9) V (*) = V (*„) + (^) (x - xn) ~ Em + ^ (x - xn) 
\dx/x=xn J\xn 

in the interval [xn+1, x^\ , it turns out that 

j ^2m*x [ AEOT + E m - V (*)] dx « 
*W + 1 

(10) ^ J ] / 2 ^ [ A E ^ - ^ ( , - , „ ) ] d ^ 

_ _ _ _ _ _ *n _ _ _ _ _ 

= ]/2< AE„ J |/ l - " ^ d* = ~ | A^ ] / 2 ^ ^xn . 
w+1 

Similarly, by letting 

0 

(11) F(E,„)= J y 2 « : [E^-V(*)J dx 

12. — RENDICONTI 1984, vol. LXXVII, fase. 5. 
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one can derive 

o 

(J j /2«: [AEM + E w -V(x) ] - ] /2m; [E,,-V(*)]) d* = 

(12) = F (Exn + AEXn) - F (Exn) ~ Ì L AE,„ = 
Cllixw 

dx ~-AExnyn^fi— 
•Y(x) 

xn 

The last integral converges in spite of the singularity for x = xn [see equation 
(6)], because V (x) is a monotonically decreasing function, hence (dV[dx)x== 7^ 0. 

Subtracting (5) from (8) and taking (10) and (12) into account, the equation 
0 

(13) - J - A ^ + A E . / ^ ^ ^ 
xn 

is finally obtained. With the other two equations 

(14) Y(xn) = ExniAExn=^^ Axn 

(13) gives a system of three equations which can be solved for xn , Axn and 
AE^ (hence E^+ 1) , once E ^ is known. 

In practice, application of the above procedure is very simple. Having 
chosen the interval [E^, E^] in which one suspects the eigenvalues E^ < 0 to be 
quasi-continuous, any point of it can be approximately identified with the nearest 
eigenvalues Exn from which to start. Then one finds the corresponding turn­
ing point x from V (x) = E^ , evaluates dV/dx and 

àt 
fEx — V(t) 

hence AE^. If AE^ « k T the suspicion is proven for the given V (x) , and 
I/AE3. gives the density of the levels E^ < 0 , i.e. the density of bound state level 
sub-bands. If we let \ = ]/ AË^« 

_ _ 3 / d V \ f dx 
(IS) 4 V dx/x=Xn J ijExn — V (x) x%J 

3 /dV\ h_ 
4-\d#/*=* n il ml 
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the coefficients a and b turn out to be positive and the preceding system can 
be easily reduced to the algebraic equation 

(16) Z* + a¥ — b = 0. 

It is easily seen that the above equation has a single positive real root which 
can be straightforwardly computed. 

AN EXAMPLE 

To illustrate the procedure with an exactly solvable example, let 

(17) V(*) = -
cosh2 ( —) 

G being a constant. The asymptotic behaviour of V (x) for x -> — oo is ob­
viously an exponential, the slope of which goes to zero. The assumption on 
decreasing V (x) is always satisfied, the only uninfluencing exception being 
x = 0 . The test will be severe because of the exponential behaviour of V (x) . 

It is well known that the negative eigenvalues of (2) corresponding to the 
boundary and asymptotic conditions 

(18) f(0) = 0 , l im/(—X) = 0 
X-»oo 

in the open interval (— oo , 0] , are given by 

(19) Vxn = -K0(t)-n-iy 

with w = 0 , 1 , . . . , N.., N being the largest non-negative integer satisfying 
the inequality 

(20) N < 8 - | , 

and 

Hence 

(22) AE^ = E 0 ^ 2 e - 2 « - | ) . 
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The number of HLxn < 0 levels is therefore N + 1 and the condition for 
the existence of at least one of them is obviously expressed by N ^ 0 , i.e. by 
6 > 3/4 . 

It makes sense to speak of a "band . " of quasi-continuous eigenvalues 
Exn < 0 if there is a large number of non-negative integers n satisfying the 
inequalities 

(23) n g N 

AEOT < Y) k T 

with a given Y) <̂  1 . Therefore, if we let 

(24) F i ( 6 ) = - { 

Y ) £ T 5 . . . vi k T 5 
if e > i 1- x 

2 E 0 ^ 4 

. . . in kT 5 
if e < i— + -

2Eo 4 

(25) F , (6) = 

3 
'4 

0 

if 6 > 

if e < 

a large number JV of non negative integers n has to satisfy the inequalities 

(26) F1 (6) < n < F 2 (6) 

for the value of 6 corresponding to the given <j>s. 

Assuming m* = 10-*» Kg , T = 300 °K , TJ == 0.01 , 4>s = 0.4 Volt, JT = 
= 500 , the following results are easily obtained 

a = 100 Â, 15.6 ^ n ^ 16.2 

G = 1000 A, 158.9 ^ n ^ 168.8 

0 = 10000 Â, 764.5 ^ n ^ 1694.5 

no band of quasi-continuous eigenvalues 

no band of quasi-continuous eigenvalues 

both discrete and quasi-continuous eigen­
values, respectively for n < 764 and 764 ^ 
n < 1695 . 

To compare exact and approximate results, we have first of all to estimate 
the accuracy of the WKB approximation itself, i.e. the Sommerfeld-like ex­
pression (5) of the eigenvalues. It can be shown that from (5) it follows that 

(27) fôwKB — ft — 4 J En -I.OWKB 
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where 

(28) JWKB : \S*£ 
« = 0 , 1 , 2 , . . . , NWKB • Therefore the WKB expression of *Exn differs from 
the exact one only in the substitution of 6 by 6WKB > hence of N by NWKB • 
It is immediately seen that 6 and 6WKB can be identified when 16 q §sj E0 ^ 1 , 
i.e. when a is sufficiently high and §8 not too low. As to the applications in­
volved, the above condition can always be considered verified. 

Finally, we can test the accuracy of the proposed method by computing 
the approximate value of AE^ and comparing this value with the exact one. 
To understand the reason for the error which affects the approximate value of 
AE^ , we also computed : 

ed by 
1) the maximum variation of dV/d# in the interval [xn+1, x^ , measur-

(29) 

/dV\ _ /dV 

' / * = % 

\dx/x=xn 

2) the error involved in evaluation of the difference (12), measured by 

(30) S2 = 

[ F (E,„ + AE,W) - F (EOT)] 

F ( E i W + A E m ) - F ( E : m ) 

The results (referred to the preceding case with a = 10000 Â) are reported 
in figure 2, where 

(31) 
(AE,„). (AE^) 

(AE^) 

The agreement is good for all values of n except the very low and very large 
ones, the error always being essentially related to s2. 
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CONCLUSIONS 

Referring to quantization in the x direction orthogonal to the interface, a 
simple procedure is given to establish whether or not a quasi-continuous band 
of bound state levels *Exn exists at an accumulation layer of a semiconductor-
insulator junction. The procedure, giving the spacing A E ^ of such levels, 
obviously gives their density too, hence the distribution of the sub-bands of 
bound state levels of the tridimensional problem. The following assumptions 
are made : i) effective mass and WKB approximation are acceptable ; ii) V (x) 
is a known monotonically decreasing function along the accumulation layer; 
iii) if a quasi-continuous band of levels ÌLxn < 0 exists in any interval between 
two consecutive turning points of such a band the curve V (x) can be approached 
by a straight line; iv)the Sommerfeld integral (11) can be linearized with respect 

The procedure is useful in a variety of problems concerning accumulation 
layers, for instance in investigations on the Fowler-Nordheim injection of elec­
trons from a Silicon accumulation layer through the gate oxide of an MO S 
device in VLSI microcircuits. The same procedure can also be made use of 
with inversion layers. 
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