Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

SEvin REcillas

A curve of genus q with a Half-Canonical embedding in \mathbf{P}^{3}

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 77 (1984), n.3-4, p. 99-101.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1984_8_77_3-4_99_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Geometria. - A curve of genus q with a Half-Canonical embedding in \mathbf{P}^{3}. Nota ${ }^{(*)}$ di Sevin Recillas, presentata dal Socio G. Zappa.

Riassunto. - Si costruiscono curve di genere $g=4 n-3, n \geq 3$ che hanno $2^{n-3}\left(2^{n-2}-1\right)$ fasci semicanonici L tali che $h^{0}(\mathrm{~L})=4$. Per $n+3$ si dimostra che gli L sono molto ampi.

1. Introduction

It is classicaly known that a way to construct rank 2 vector bundles on \mathbf{P}^{3} is to find curves $\tilde{\tilde{C}}$ which carry a very-ample half-canonical line bundle L such that $h^{0}(\mathrm{~L})=4$. Here we propose an example of a family (of dimension $3 n-3, n \geq 3$) of such curves of genus $g=4 n-3$. The very-ampleness of L has only been proved in the case $g=q$.

2. Construction of the General Example

Let C be a generic curve of genus $n(n \geq 3)$ defined over the complex field C. Let $\eta \in \operatorname{Pic}^{0}(\mathrm{C})$ be a non-zero element of order 2. One knows that there exists $2^{n-2}\left(2^{n-1}-1\right)$ different pairs of odd theta-characteristics $\left\{L_{1}, L_{2}\right\}$ such that $\mathrm{L}_{1} \otimes \mathrm{~L}_{2}^{-1}=\eta$. Pick two such pairs $\left\{\mathrm{L}_{1}, \mathrm{~L}_{2}\right\}$ and $\left\{\mathrm{L}_{3}, \mathrm{~L}_{4}\right\}$. Let us observe that $\mathrm{L}_{1} \otimes \mathrm{~L}_{3}^{-1}=\sigma$ is also a point of order 2 on $\operatorname{Pic}^{0}(\mathrm{C})$ and $\left\{\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}, \mathrm{~L}_{4}\right\}$ is an homogeneous space for the group $\{0, \eta, \sigma, \eta \sigma\}$. We also recall that since C is general, one has $h^{0}\left(\mathrm{~L}_{i}\right)=1, i=1,2,3,4$.

Let $\tilde{\mathrm{C}} \xrightarrow{\alpha} \mathrm{C}$ denote the unramified double cover associated to η, we will use the following remarks about such covers: If F is an invertible sheaf on C , then there is a natural isomorphism

$$
\begin{equation*}
\mathrm{H}^{0}\left(\widetilde{\mathrm{C}}, \alpha^{*} \mathrm{~F}\right) \cong \mathrm{H}^{0}(\mathrm{C}, \mathrm{~F}) \otimes \mathrm{H}^{0}(\mathrm{C}, \mathrm{~F} \otimes \eta) \tag{M}
\end{equation*}
$$

If $\widetilde{\mathrm{C}}$ is hyperelliptic (elliptic-hyperelliptic) then the curve C is also hyperelliptic (elliptic-hyperelliptic) [D].
(*) Pervenuta all'Accademia il 26 settembre 1984.

Since our theta-characteristics differ by η, when we pull them back to $\tilde{\mathrm{C}}$ we get $\alpha^{*} \mathrm{~L}_{1}=\alpha^{*} \mathrm{~L}_{2}=\mathrm{M}$ and $\alpha^{*} \mathrm{~L}_{3}=\alpha^{*} \mathrm{~L}_{4}=\mathrm{N}$ and since the cover is unramified they are still half-canonical on $\tilde{\mathrm{C}}$ and in fact by the previous remark we know that

$$
h^{0}(\tilde{\mathrm{C}}, \mathrm{M})=h^{0}(\widetilde{\mathrm{C}}, \mathrm{~N})=2
$$

Now $\alpha^{*} \sigma$ is a point of order 2 in $\operatorname{Pic}^{0}(\tilde{\mathrm{C}})$ and $\mathrm{M}=\alpha^{*} \sigma \otimes \mathrm{~N}$, so we can do the same construction again. Let $\tilde{\mathrm{C}} \xrightarrow{\beta} \widetilde{\mathrm{C}}$ be the unramified double cover associated to $\alpha^{*} \sigma$, then $\beta^{*} \mathrm{M}=\beta^{*} \mathrm{~N}=\mathrm{L}$ is still half-canonical and we have $h^{0}(\tilde{\tilde{\mathrm{C}}}, \mathrm{L})=4$.

The couple ($\tilde{\tilde{\mathrm{C}}}, \mathrm{L})$, is then a member of our family.
Let us observe that $\tilde{\tilde{C}}$ depends only on the subgroup $\{0, \eta, \sigma, \eta \sigma\} \subset$ $\subset \operatorname{Pic}^{0}(\mathrm{C})$ and L depends only on the set $\left\{\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}, \mathrm{~L}_{4}\right\}$. From this and from the fact that on a generic C , for a given subgroup $\{0, \eta, \sigma, \eta \sigma\}$ there exist $2^{n-3}\left(2^{n-2}-1\right)$ different sets (one computes this the same way as the number of odd theta pairs), it follows that on a given $\tilde{\tilde{C}}$ as above, there exist $2^{n-3}\left(2^{n-2}-1\right)$ different half-canonical sheaves L such that $h^{0}(\tilde{\tilde{C}}, \mathrm{~L})=4$.

Another way of looking at such $\tilde{\tilde{C}}$ is as a general curve with a group of automorphisms isomorphic to $\mathbf{Z}_{2} \otimes \mathbf{Z}_{2}$ whose elements are fixed point free.

3. The Case $n=3$

In this case $\tilde{\mathrm{C}}$ is of genus 5 so $h\left(\widetilde{\mathrm{C}}, \Omega_{\widetilde{\mathrm{C}}}^{1} \alpha^{*} \sigma\right)=4$, hence since $\mathrm{M} \otimes \mathrm{N}=\Omega_{\widetilde{\mathrm{C}}}^{1} \otimes \alpha^{*} \sigma$ the image of $\widetilde{\mathrm{C}}$ under the Prym-canonical map $\widetilde{\mathrm{C}} \rightarrow \mathbf{P}^{3}$ (which is birational since $\widetilde{\mathrm{C}}$ cannot be hyperelliptic or elliptic-hyperelliptic because we are assuming C general) is contained in a non-singular quadric surface whose rulings cut the linear systems $|\mathrm{M}|$ and $|\mathrm{N}$.$| Since \mathrm{P}_{a}(\widetilde{\mathrm{C}})=0$, this Prym-canonical curve must have some singularities, one knows that those can only be double points corresponding to divisors $a_{i} \in \widetilde{\mathrm{C}}^{(2)} i=1,2,3,4$, which must be arranged in the form

$$
a_{1} \sim a_{2}+\alpha^{*} \sigma \quad \text { and } \quad a_{3} \sim a_{4}+a^{*} \sigma \quad \text { with } \quad a_{i} \cap a_{j}=\Phi, \quad i \neq j .
$$

Moreover, since the rulings of the quadric cut $|\mathrm{M}|$ and $|\mathrm{N}|$ and since $\mathrm{M}=$ $=\mathrm{N} \otimes \alpha^{*} \sigma$ one must have

$$
a_{1}+a_{3}, a_{2}+a_{4} \in|\mathrm{M}| \quad \text { and } \quad a_{1}+a_{4}, a_{2}+a_{3} \in|\mathrm{~N}| .
$$

Also observe that if i denotes the involution on $\tilde{\mathrm{C}}$, since $\alpha a_{1} \sim \alpha a_{2}$ we must have (C being not hyperelliptic)

$$
\alpha a_{1}=\alpha a_{2} \quad \text { i.e. } \quad a_{1}^{i}=a_{2} \quad \text { and also } \quad a_{3}^{i}=a_{4}
$$

We lift now our divisors to $\tilde{\widetilde{\mathrm{C}}} \xrightarrow{\beta} \widetilde{\mathrm{C}}$ and we observe that $\beta^{*} a_{\mathbf{1}} \sim \beta^{*} a_{\mathbf{2}}$, $\beta^{*} a_{3} \sim \beta^{*} a_{4}, \beta^{*} a_{1} \sim \beta^{*} a_{3}$ and $\beta^{*} a_{i} \cap \beta^{*} a_{\jmath}=\Phi, i \neq j$.

So on $\tilde{\mathrm{C}}$ we have two different g_{4}^{1} 's whose sum is $|\mathrm{L}|$. From this it follows that the image of the map associated to $\mathrm{L}: \tilde{\tilde{\mathrm{C}}} \xrightarrow{\varphi} \mathbf{P}^{3}$ is contained on a non-singular quadric surface whose rulings pull back to the g_{4}^{1} 's, so our map is birational since being of degree 2 would imply that $\tilde{\tilde{\mathrm{C}}}$ is elliptic-hyperelliptic. Finally since $\mathrm{P}_{\alpha}(\tilde{\tilde{\mathrm{C}}})=9=g(\tilde{\mathrm{C}})$ if follows that φ is an isomorphism.

Bibliography
[D] Del Centina Q. - G_{k}^{1} 's on an unramified double cover of a k-gonal curve and applications. «Rend. Sem. Mat. Univers. Politecn. Torino», 41 (1) (1983).
[M] Mumford D. (1974) - Prym Varieties I. Countributions to Analysis, N. Y. Academic Press.

