ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

SEVIN RECILLAS

A curve of genus q with a Half-Canonical embedding in \mathbf{P}^3

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **77** (1984), n.3-4, p. 99–101.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1984_8_77_3-4_99_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1984.

Geometria. — A curve of genus q with a Half-Canonical embedding in P³. Nota ^(*) di SEVIN RECILLAS, presentata dal Socio G. ZAPPA.

RIASSUNTO. — Si costruiscono curve di genere g = 4 n - 3, $n \ge 3$ che hanno $2^{n-3}(2^{n-2}-1)$ fasci semicanonici L tali che $h^0(L) = 4$. Per n+3 si dimostra che gli L sono molto ampi.

1. INTRODUCTION

It is classically known that a way to construct rank 2 vector bundles on \mathbb{P}^3 is to find curves $\tilde{\mathbb{C}}$ which carry a very-ample half-canonical line bundle L such that $h^0(L) = 4$. Here we propose an example of a family (of dimension 3 n - 3, $n \ge 3$) of such curves of genus g = 4 n - 3. The very-ampleness of L has only been proved in the case g = q.

2. Construction of the General Example

Let C be a generic curve of genus $n \ (n \ge 3)$ defined over the complex field C. Let $\eta \in \operatorname{Pic}^0(C)$ be a non-zero element of order 2. One knows that there exists $2^{n-2} (2^{n-1}-1)$ different pairs of odd theta-characteristics $\{L_1, L_2\}$ such that $L_1 \otimes L_2^{-1} = \eta$. Pick two such pairs $\{L_1, L_2\}$ and $\{L_3, L_4\}$. Let us observe that $L_1 \otimes L_3^{-1} = \sigma$ is also a point of order 2 on Pic⁰ (C) and $\{L_1, L_2, L_3, L_4\}$ is an homogeneous space for the group $\{0, \eta, \sigma, \eta\sigma\}$. We also recall that since C is general, one has $h^0(L_i) = 1$, i = 1, 2, 3, 4.

Let $\tilde{C} \xrightarrow{\alpha} C$ denote the unramified double cover associated to η , we will use the following remarks about such covers: If F is an invertible sheaf on C, then there is a natural isomorphism

$$[M] \qquad \qquad H^{0}\left(\tilde{C}, \, \alpha^{*} \, F\right) \cong H^{0}\left(C, \, F\right) \otimes H^{0}\left(C, \, F \otimes \eta\right).$$

If C is hyperelliptic (elliptic-hyperelliptic) then the curve C is also hyperelliptic (elliptic-hyperelliptic) [D].

(*) Pervenuta all'Accademia il 26 settembre 1984.

Since our theta-characteristics differ by η , when we pull them back to \tilde{C} we get $\alpha^* L_1 = \alpha^* L_2 = M$ and $\alpha^* L_3 = \alpha^* L_4 = N$ and since the cover is unramified they are still half-canonical on \tilde{C} and in fact by the previous remark we know that

$$h^{0}(\tilde{C}, M) = h^{0}(\tilde{C}, N) = 2$$
.

Now $\alpha^* \sigma$ is a point of order 2 in Pic⁰ (\tilde{C}) and $M = \alpha^* \sigma \otimes N$, so we can do the same construction again. Let $\tilde{\tilde{C}} \xrightarrow{\beta} \tilde{C}$ be the unramified double cover associated to $\alpha^* \sigma$, then $\beta^* M = \beta^* N = L$ is still half-canonical and we have $h^0(\tilde{\tilde{C}}, L) = 4$.

The couple $(\tilde{\tilde{C}}, L)$, is then a member of our family.

Let us observe that \tilde{C} depends only on the subgroup $\{0, \eta, \sigma, \eta\sigma\} \subset \subset \operatorname{Pic}^0(\mathbb{C})$ and L depends only on the set $\{L_1, L_2, L_3, L_4\}$. From this and from the fact that on a generic C, for a given subgroup $\{0, \eta, \sigma, \eta\sigma\}$ there exist $2^{n-3}(2^{n-2}-1)$ different sets (one computes this the same way as the number of odd theta pairs), it follows that on a given \tilde{C} as above, there exist $2^{n-3}(2^{n-2}-1)$ different half-canonical sheaves L such that h^0 (\tilde{C}, L) = 4.

Another way of looking at such \tilde{C} is as a general curve with a group of automorphisms isomorphic to $\mathbf{Z}_2 \otimes \mathbf{Z}_2$ whose elements are fixed point free.

3. The Case n = 3

In this case \tilde{C} is of genus 5 so $h(\tilde{C}, \Omega_{\tilde{C}}^{1} \alpha^{*} \sigma) = 4$, hence since $M \otimes N = \Omega_{\tilde{C}}^{1} \otimes \alpha^{*} \sigma$ the image of \tilde{C} under the Prym-canonical map $\tilde{C} \to \mathbf{P}^{3}$ (which is birational since \tilde{C} cannot be hyperelliptic or elliptic-hyperelliptic because we are assuming C general) is contained in a non-singular quadric surface whose rulings cut the linear systems |M| and |N|. Since $P_{a}(\tilde{C}) = 0$, this Prym-canonical curve must have some singularities, one knows that those can only be double points corresponding to divisors $a_{i} \in \tilde{C}^{(2)}$ i = 1, 2, 3, 4, which must be arranged in the form

$$a_1 \sim a_2 + lpha^* \sigma$$
 and $a_3 \sim a_4 + a^* \sigma$ with $a_i \cap a_j = \Phi$, $i \neq j$.

Moreover, since the rulings of the quadric cut |M| and |N| and since $M==N\otimes\alpha^*\sigma$ one must have

$$a_1 + a_3 \,,\; a_2 + a_4 \in \, |{
m M}| \qquad {
m and} \quad a_1 + a_4 \,,\; a_2 + a_3 \in \, |{
m N}| \,.$$

Also observe that if *i* denotes the involution on \tilde{C} , since $\alpha a_1 \sim \alpha a_2$ we must have (C being not hyperelliptic)

$$\alpha a_1 = \alpha a_2$$
 i.e. $a_1^i = a_2$ and also $a_3^i = a_4$.

We lift now our divisors to $\tilde{\tilde{C}} \xrightarrow{\beta} \tilde{C}$ and we observe that $\beta^* a_1 \sim \beta^* a_2$, $\beta^* a_3 \sim \beta^* a_4$, $\beta^* a_1 \sim \beta^* a_3$ and $\beta^* a_i \cap \beta^* a_j = \Phi$, $i \neq j$.

So on $\tilde{\tilde{C}}$ we have two different g_4^1 's whose sum is |L|. From this it follows that the image of the map associated to $L: \tilde{\tilde{C}} \xrightarrow{\phi} \mathbf{P}^3$ is contained on a non-singular quadric surface whose rulings pull back to the g_4^1 's, so our map is birational since being of degree 2 would imply that $\tilde{\tilde{C}}$ is elliptic-hyperelliptic. Finally since $P_{\alpha}(\tilde{C}) = 9 = g(\tilde{C})$ if follows that ϕ is an isomorphism.

BIBLIOGRAPHY

- [D] DEL CENTINA Q. G_k^1 's on an unramified double cover of a k-gonal curve and applications. « Rend. Sem. Mat. Univers. Politecn. Torino », 41 (1) (1983).
- [M] MUMFORD D. (1974) Prym Varieties I. Countributions to Analysis, N.Y. Academic Press.