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Geometr ia differenziale. — A Weitzenbôck formula for the second 

fundamental form of a Riemannian foliation W. N o t a <**) di P A O L O 

P I C C I N N I , p resenta ta dal Socio E. M A R T I N E L L I . 

RIASSUNTO. — Si considera la seconda forma fondamentale a di foliazioni su va
rietà riemanniane e si ottiene una formula per il laplaciano \72 a- Se ne deducono alcune 
implicazioni per foliazioni su varietà a curvatura costante. 

§ 1. INTRODUCTION 

1. Let N be an //-dimensional sub-manifold of an m-dimensional Rie
mannian manifold M. Let VN and VM be the Levi Civita connections of N 
and M, RN and RM their curvature operators, and let B be the second funda
mental form defined by: 

(1.1) VxY = VxY + B ( X , Y ) . 

B satisfies in particular the Codazzi equation: 

(1.2) , TU (RM (X , Y) Z) = (Vx B) (Y , Z) - (VY B) (X , Z) 

(X , Y , Z vector fields on N , TC : T M -> Q projection in the normal bundle 

of N , and (Vx B) (Y , Z) = n Vx B (Y , Z) - B (v£ Y , Z) - B (Y , V* Z)) . 

For any orthonormal basis {e{} of the tangent space T p N and any further 
x , y e TpN one can find orthonormal local extensions {E J of {e J and local 
extensions X , Y of x , y satisfying V*. E, = V^.X = V f̂. Y = 0; i ,j = 1 , . . . , n 
(see for instance [8; § 1]). By using such vector fields and the Codazzi equa
tion, J. Simons [7] obtained that the Laplacian V2 B of B can be expressed 
by the following formula: 

(#) Lavoro eseguito mentre l'Autore fruiva di una borsa di studio del C.N.R. 
per l'estero, presso la University of Illinois at Urbana-Champaign. 

(#*) Pervenuta all'Accademia il 22 ottobre 1984. 
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(v»B)(* ,:>,)=£ (ve.vE.B)(*,y) = 
i = l 

= 2 [D^. (* (RM (E, ,X)Y)) + D,(7c (RM (E, ,Y)E«)) + 

(1.3) + R D ( « 4 , * ) B f a , ; y ) — B (RN («, ,*) « , ,y) — 

— B (*« , RN fo , x)y)} + D x D Y (Tr B) , 

where D = n VM is the normal connection induced on Q. 

Simons' formula 1.3 is contained also in the recent book [9], where several 
applications of it are given. 

In this paper we obtain a formula of Simons' type in the case of a foliation ^ 
on M. We use the second fundamental form a of #" as defined by F.W. Kam-
ber and Ph. Tondeur ([2]). Since a is a symmetric bilinear form on all the 
tangent bundle of M (with values in the normal bundle Q o f ^ ) , our formula 
for the Laplacian V2 a of a applies not only to vectors which are tangent to 
the sub-manifolds that are leaves of the foliation, but to all the tangent vectors 
of M (formula 3.1). Nevertheless we remark that our formula 3.1, restricted 
to the leaves, does not give exactly Simons' formula 1.3, but a slightly different 
formula, since we make a different choice of the connections and of the vector 
fields that are involved. 

Formulas giving local expressions of Laplace operators are usually referred 
to as Weitzenbòck formulas (see, for instance, [3], [8]). In the case of a Rie-
mannian foliation on a manifold with constant curvature we obtain also a 
" scalar " Weitzenbòck formula (5.3), expressing the Laplacian of the square 
of the norm of the Weingarten operator associated to a. This scalar formula 
has several geometrical implications (7.1). 

The author would like to thank Professor Philippe Tondeur for his encou
ragement and for many discussions on this subject. 

§ 2. T H E WEITZENBòCK FORMULA FOR V2 a 

2. Let #" be an /z-dimensional foliation on an ///-dimensional Riemannian 
manifold M. The metric gM defines a splitting a : Q -> T M of the exact se
quence 

0 - > L - * T M ^ Q - > 0 , 

where T M is the tangent bundle, L the integrable sub-bundle defining^ and 
Q the quotient bundle of W. 

Consider on Q the connection V defined by 
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f 7u[X, YJ if X e FL 

(2.1) V x * H M 
I TU(VX Ys) if X e T a Q 

where TL and TG Q are the sets of the vector fields respectively tangent and 
normal to J^, and where we use the notation Ys = cr (s) for s e TQ . From 2.1 
we see that V is the partial Bott connection along the leaves of *F, and it is induced 
by the Levi Civita connection VM in the normal direction. 

We recall that F is a Riemannian foliation if the metric £Q induced on Q 
by gM is parallel along the leaves with respect to the Bott connection. It fol
lows that if & is Riemannian, the connection V (2.1) is the only connection on 
Q that is compatible with gQ and torsion free in the sense that T y (X , Y) = 
= V x 7T (Y) — VY TT (X) — TI [X , Y] = 0 (cf. [2, p. 90] or [6, pp. 155-156]). 

For any foliation IF on M the symmetric bilinear form a : Y T M X 
X r T M - ^ T Q defined by 

(2.2) a (X , Y) = Ti (V xY) - V x TT (Y) 

is called second fundamental form of ^ ([2, p. 94]) and reduces to the classical 
form B (1.1) on every leaf of ^ . 

The form a satisfies the following Codazzi equation for foliations ([3]): 

(2.3) T U ( R M ( X , Y ) Z ) - R V ( X , Y ) T C ( Z ) = 

= ( V x a ) ( Y , Z ) - ( V Y a ) ( X , Z ) 

(X , Y , Z e r TM), that restricted to any leaf gives the classical equation 1.2. 

Fixed any p e M consider next an orthonormal basis {eA} of T^M and an 
orthonormal local extension {EA} of {e^} such that V^l EB = 0 for all A , B = 
= 1 , . . . , m ; also for any further x = TiXAeA,ye 2/yA eA in T^M consider 
the local extensions X = 2 xA EA , Y = 2 yA EA so that also V~^ X = 
= V ^ A Y = 0 . 

From equation 2.3 we obtain: 

(2.4) 2 (V6A <*) (EA , Y) = 2 (V a) (Y , EA) 
A A A A 

=2 [* (RM
 («A . y) e A) - K («A > y) « («A)] + Tr (V, a) 

A 
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3. The following evaluation uses 2.3 and the conditions V1^1 EB = 

.= V M
A X = V M

A Y = 0: 

(V« a) (* ,y) = S V,A ( ( V E A a) (X , Y)) = 
A 

= X [VeA (* (RM (EA , X) Y)) - V H (Rv (EA , X) Tt (Y)) + 

A 

+ (Rv (eA , x) a) (*A , y) + V, ( ( V E A a) (EA , Y))] , 
where Rv (*A , *) a = (V,A V x — V* V E A — V [EA , ^ a and [EA , X ] , = 

= VP^A X — V ^ EA = 0 . By applying equation 2.4 to the last term in the 

r.h.s. and by using the identity: 

(Rw(eA,x)a)(eAyy) = 

= R v (*A > x) « (*A > jO — a ( R M (*A > X) *A > y) " * (*A > R M (*A , *) JO > 

this yields: 

(3.1) PROPOSITION. 77*é? Laplacian V2 a w £&*» 6y: 

(V2 a) (*,;;) = 

- 2 [VeA (* (RM (EA , X) Y)) - V,A (Rv (EA , X) Te (Y)) + 
A = i 

+ V, (TT (RM (EA , Y) EA) - V, (Rv (EA , Y) n ( E A ) ) + 

+ Rv (eA ,x)*(eA,y) — K (RM (eA , x) eA , y) — a (*A , RM (eA , *) J/)] + 

+ V, VY Tr a . 

If we choose the frame {eA} such that the first n vectors e, , . . . , en are tan
gent to the leaf through p and consider the decomposition: 

n m 

(3.2) ( V a) (* , y) = £ V,. ((V a) (X , Y)) + £ V ((V a) (X , Y)), 
* = i 3 = w + i 

from 3.1, 2.1 and our assumptions on the vector fields we see that: 

(3-3) S Ve. ((V,. a) (X , Y)) = „ VM
f. (RM (E4 , X) Y) -

1 = 1 

- Ti V ^ (RM (E<, Y) E<) - a (RM-fo , *) ^ ,y) _ a ( , . , RM ( ^ ^ ) y ) + 

V* VY Tr a , 

where x , jy are tangent to the leaf. We note in particular that a (eY , ey) = 0 

for y = n -\- 1 , . . . , m and hence Tr a = ^ a (^ , et). 
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Formula 3.3 gives an expression of the type 1.3 along the leaves, but with 
different choices of the connections and of the vector fields. 

4. Assume now M = M(&) be a manifold with constant sectional cur
vature k. Then the curvature operator of M is given by: 

RM (x ,y) z = k [gM (y,z)x—gM(x, #)y] > 

and from def. 2.2 and our choices of X , Y we get: 

V,A (TU ( R M ( E A , X) Y)) = k [— gM (x ,y) a (eA , eA) + gM (eA , y) a (eA , x)] 

(4.1) 
V , (TI (RM (EA , Y) EA)) = k [~gM (eA ,y) *(eA,x) + *(xy y)] . 

Formulas 4.1 allow us to simplify the r.h.s. of 3.1 for M = M(&). In 
order to get a further simplification we make the assumption that the connec
tion V in the normal bundle Q of !F is flat (R^ = 0). This condition is equiva
lent to the possibility of extending any frame in the fiber Q^ by local sections 
in Q which are parallel with respect to V. This can be proved by the same 
argument used for sub-manifolds with flat normal connection (cf. for instance [1]). 

(4.2) LEMMA. Let M = M (k) and let & be a foliation on M with flat 
connection V. Then the Laplacian V2 a is given by: 

(V2 a) (a? >y)=2k[moi(x,y) —gM (x , y) Tr a] + Vx VY Tr a , 
for any x , y e Tp M . 

Proof From 3.1, by using equations 4.1 and R y = 0 one has easily: 

(V2 oc) (x , y) = ]T k {—gM (x,y)<* (eA , eA) + m a (x , y) — 
A 

— g M ( * A > x ) * ( e A > y ) + m * ( x > y ) — g M ( x > y ) < * • ( * A > * A ) + 

+ £M («A » y) a
 ( 'A > *)> + V^ VY Tr a . 

Also, if x = 2 ^A eA > y = X J ' A ek* o n e obtains: 
A A 

X {— gM (*A » X) a (eA >y)+gM (eA>y) * (eA >x)} = 
A 

= 2 {— ^ A J B a (eA , eB) + xB yA a (eA , eB)} = 0 , 
A , B 

and hence the claimed formula. 
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§3 . T H E SCALAR WEITZENBOCK FORMULA 

5. In the same context as in n. 4 consider for every normal vector v e Qp 

the Weingarten operator Av : T^M -* T^M defined by: 

gM (A0x,y) = £ Q (a (x,y), v) 

and its Laplacian (V2 A), : T p M -* T p M given by: 

(5.1) gu ((V2 A), x , y) =gQ ((V2 a) (x,y),v). 

In what follows, we assume to have chosen {eA} as indicated for formula 3.2. 

(5.2) LEMMA. With the same hypotheses of Lemma 4.2, we have: 

gM(V*A,A)=2k [mgM (A , A) — gQ (Tr a , T r a)] + 

+ 2 £ Q ( V , B V ~ T r a , . « 3 ) , 
B , 3 - p P 

&;/Ì£r£ &;£ z/^rf A3 = Ae , A3 eB local extension of A3 eB that is covariant constant 

at p with respect to VM , and where we assumed B = 1 , . . . , m; (3 = /z + 1 > 
. . . , m . 

Proof. From 5.1 and Lemma 4.2 we see that: 

£ M ( V 2 A , A ) - = 2 £ M ( ( V 2 A ) 3 * B , A 3 * B ) = 
B , 3 

= 2 {2kmgQ(* (eB y A3 *B) ye$) — 2kgM (eB , A3 *B) gQ (Tr a , £3) + 
B , 3 

+ ^ Q ( V , B V A ^ B T r a , , 3 ) } . 

Since : 

and: 

2 <?Q ( a
 (*B > A3 *B) > ^ ) = 2 £M (A3 eB , A3 eB ) = £ M (A , A) 

B , 3 B , 3 

2 §M (*B > A3 eg) = X <?Q ( a (eB y *B) y eï) = £ Q (Tr a , *p) 
B B 

we have the conclusion. 

(5.3) THEOREM. Let 'M —M(&) be a manifold with constant curvature k 
and let i¥ be a Riemannian foliation on M with flat connection V. Then the La
placian of the square of the norm of the Weingarten operator A of ^ is given by : 

- 1 \gM(A,A)=gM(VA,VA) + 

+ 2 k[mgM (A , A) -gQ (Tr a , Tr a)] + £ gQ (V V ~ Tr oc, *).. 
B , p ' 3 0 
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Proof. Since ïF is Riemannian we have that Vx gQ = ® for X e TL. From 
the definition of V it is easy to see that actually Vx £Q = 0 for all X e TT M, 
i.e. V is metric (cf. n. 2). By applying the metric condition twice, we get: 

- I A*M (A , A) = £ M (V2A , A) + gM (VA , VA) 

and from Lemma 5.2 the conclusion. 

6. The following evaluation of the terms in the brackets of formula 5.3 
will be useful in the applications. We assume B , C = 1 , . . . , m; i ,j = 1 , 
. . . , « ; $ ,y — n + 1 > . . . ,m . Then: 

mgM (A , A) — gQ (Tr a , Tr a) = 

= m X gM (A3 eB , A3 eB) — £ £Q (Tr a , *3) = 
B, 3 B 

= m 2 £M (A3 *B , ^ c ) — 2 <?M (A3 *B , *B) = 
B, C, 3 B , 3 

= m 2 £M (A3 *B >*c) + 0» — !) 2 ^ M ( A 3 ^ B > ^ B ) ' 
B,C,3 B,3 
B=HC 

It follows: 

(6.1) LEMMA. mgM (A , A) — £ Q (Tr a , Tr a) > 0 and the equality holds 

ijfA = 0. 

§ 4. APPLICATIONS 

7. From the definition of a one sees that a (x , 3/) = 0 if both x,ye Qp. 

The mean curvature jx of ^ is then defined by \i = — Tr a (?z = dimjF). If 
n 

we choose {#A} as specified for formula 3.2 we have: 

[L= — 2 a (ei9 ^ ) . 
ni 

(7.1) COROLLARY. L#£ M = M(&) è# a compact Riemannian manifold 
with constant curvature k, IF a Riemannian foliation on M with flat connection V . 
Then : 

(i) if k > 0 tf/zrf £/*£ /ft£tf/z curvature [i is parallel with respect to V, then 
the second fundamental form a of &> is identically zero. 

(ii) if k = 0 and the mean curvature \L is parallel with respect to V, then 
the second fundamental form a is also parallel with respect to V. 
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(iii) if k < 0 and the second fundamental form a is parallel with respect 
to V, then a is identically zero. 

Proof. 

(i) If V(JL = 0 from 5.3 we have: 

- 1 A£M (A , A) = £ M (VA , VA) + 2 k [mgM (A , A) — gQ (Tr a , Tr a)] , 

where by the assumption k > 0 and by 6.1 the r.h.s. is non-negative. It follows 

that AgM (A , A) > 0 and then the divergence theorem àgM (A , A) d^ = 0 
M 

implies AgM (A , A) = 0. Therefore the r.h.s. is identically zero and Lemma 6.1 
gives the conclusion. 

(ii) If VfJi = 0 and k = 0 we get the equation 

- 1 A £ M ( A , A ) : = £ M ( V A , V A ) 

and the conclusion follows from the divergence theorem, 

(iii) If VA = 0 we have also Vpi = 0 and hence: 

- 1 A^M (A , A) = 2k [mgM (A, A) — gQ (Tr a , Tr a)] 

where by k < 0 and 6.1 the r.h.s. is non-positive. Then AgM (A , A) < 0 
and the conclusion follows as in (i). 

(7.2) Remark. We observe that in 7.1 (i) the assumptions k > 0 , Rv = 0 

are non-compatible if codim F > 1. This follows from the O'Neill formula for 

Riemannian submersions ([4]), that in terms of the sectional curvatures Rv (e$ , ey) 

and RM (e$ , ey) of V and VM (^ , er e Qp and orthonormal) can be written as : 

Rv (* > ey) = RM (*3 , ey) + A I ^ [E3 , EJ | | , 
4 

where n1 : T M -> L is the orthogonal projection (cf. [5], p. 213 or [3]). 

(7.3) Remark. The conclusion a = 0 contained in the statements (i) 
and (iii) of 7.1 can be proved to be equivalent to the twofold condition that all 
the leaves of ^ are totally geodesic in M and that the normal bundle of F is 
also integrable and totally geodesic (cf. [2], p. 97). 

In the case M = Sm (sphere) it is well-known that the only totally geodesic 
sub-manifolds are the great ^-spheres (cf. [5], p. 105). By the previous remark 
it follows that statement 7.1 (i) gives the non-existence of foliations on the 
spheres with the required properties. 

8. — RENDICONTI 1984, vol. LXXVII, fase. 3-4. 
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(7.4) Remark. For Riemannian foliations on a compact manifold the 
assumption VV[x = 0 implies V[JL = 0 and this implies jx = 0. 

To obtain the first implication note that the metric condition for V gives 
the identity 

1 A£Q (Tr a , Tr a) = gQ (V Tr a , V Tr a) + gQ (V2 Tr a , Tr a) , 

and this, integrated over M, shows that if Wfx = 0 then also Vjx = 0 . 
The second implication follows from the formulas 

ATT = dv d* Ti = dv Tr a = V Tr a , 

where d* is the adjoint of the exterior differential dv of V and where Tr a is 
thought as a 0-form on M with values in Q (cf. [2], pp. 103-104). Hence V[i = 
= 0 implies A-ru = 0 and since M is compact that d* n = Tr a = 0 and hence 
[i = 0. 

Therefore the statements of 7.1 can be obtained also by observing that 
Vfx = 0 implies ^Q (Tr a , Tr a) = 0 and by the divergence theorem. 
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