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Analisi matematica. — On the Existence of Optimal Solutions 
for Infinite Horizon Optimal Control Problems : Nonconvex and Multicri-
teria Problems. Nota di DEAN A. CARLSON <*>, presentata <**> dal 
Socio straniero L. CESARI, 

RIASSUNTO. — In questa Nota si continua la discussione iniziata in [4] dell'esi­
stenza di soluzioni ottimali per problemi di ottimo controllo in [0 + OO}. Si definiscono 
problemi generalizzati, e si ottengono estensioni di risultati già presentati in [4]. Si di­
mostrano anche varie relazioni tra le soluzioni ottimali dei problemi generalizzati e i 
problemi originali e non convessi di ottimo controllo. Alla fine si considerano pro­
blemi lineari nelle variabili di stato anche nel caso di costi funzionali a valori vettoriali 
(ottimizzazione alla Pareto). 

1. INTRODUCTION 

In this note we continue discussing the existence of optimal solutions, under 
minimal convexity hypotheses, for optimal control problems defined on [0 , + oo). 
Our emphasis concentrates on the case when the cost functional, given as an 
improper integral, does not necessarily converge. This leads to a variety of 
weaker notions of optimality. Here we discuss extensions of the results pre­
sented in Carlson [4] to the case of nonconvex problems through the introduc­
tion of chattering states as well as to the case of a vector valued cost criteria 
(i.e., Pareto optimality). 

2. THE MODEL 

The model we treat is a Lagrange-type problem of optimal control. Spe­
cifically we consider a control system of the form 

(1) x(t) =f(t ,x(t),u 00), a.e. on [0 , + oo) 

(2) x (0) = x0 

where the state variable x (t) e En and the control variable u (t) e Em . Let 
A = [0 , + oo) X X ç El+n be closed and for each (t, x) G A let U (t, x) ç Em 

be such that the set M = {(t, x , u) : (t, x) e A , u e U (t, x)} is closed. The 
function / : M —> En is assumed to satisfy the usual Carathéodory conditions. 
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We consider admissible pairs of functions {x, u}, each pair consisting of 
a measurable function u : [0 , + oo) —>• Em and a corresponding locally abso­
lutely continuous function x : [0 , + oo) -> Ew, which satisfies the control system 
(l)-(2) as well as the constraints 

(3) (t, x (t)) e A , for all t > 0 

(4) u (t) G U (t, * (*)), a.e. on [0 , + oo). 

The objective functional we consider is described as an improper integral 

-f-oo 

(5) J[x,u]=jg(t,x(t),u (t)) dt, 

0 

where g : M —>• E1 is a Lebesgue normal integrand in the sense of Rockafellar 
[8]. Further we require an admissible pair {x , u} to be such that the map t -> 
-> g (t, x (t) , u (t)) is locally Lebesgue integrable on [0 , + oo) . The set of 
all admissible pairs, denoted by Q, is assumed to be nonempty. 

The hypotheses given above are insufficient to insure the convergence 
of the functional J for a given {x, u} e O and thus the traditional notion of a 
minimum is not applicable. Therefore we deal with a variety of weaker no­
tions of optima]ity that have recently arisen in the literature. Here however 
we restrict our attention to the case of a true minimum, referring the reader to 
Carlson [5] for a discussion of the corresponding results for the weaker types 
of optimality. 

The necessary compactness property for the set of admissible trajectories 
is ensured by assuming that the functions / and g satisfy an extension of a stan­
dard growth condition utilized by Cesari [7] and others. Specifically, we say 
that / and g satisfy the growth condition (y) if for every s > 0 and T > 0 there 
exists L T > 0 and an integrable function <\)eT : [0 , + oo) -> E1 such that 
g (t, x , u) < L T and \f(t,x,u) \ < ^ s T (t) + zg (t, x , u) a.e. in t e [0 , T] , 
(t, x , u) G M . This growth condition ensures that the set of admissible trajec­
tories is a relatively weak compact subset of the space of locally absolutely con­
tinuous functions, where here the topology is convergence of initial values and 
weak Lx-convergence of derivatives on compact subsets of [0 , -f- oo) . For 
details see Carlson [5; 2.2]. 

3. NONCONVEX PROBLEMS 

A crucial assumption placed on the models in [4] is the convexity of the sets 
Q (£ y x) = {(#° , z) : z° > g (t, x , u), z =f(t, x , u), u e U (t, x)}. In this 
section we investigate the case when this convexity hypothesis does not hold. 
To discuss such problems we define the relaxed problem by defining the func­
tions G and F as 
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n + 2 

(6) G(t,x, u, p) = V pkg(t,x,uk) 

and 
n + 2 

(7) F(tyx,û,p)=y)pkf(tyx,uk)y 
k = i 

• « + 2 
where for & = 1, 2 , . . . , n + 2, (t, a?, z/Â) e M , ^ > 0, and V pk = 1 . 
Specifically we consider triples {x (i) , u(t) , p (t)} ; where x e AC,oc , p (t) = 
(A (0 > ^2 (*)>••• > -?w+2 ( 0 ) e E n + 2 is measurable, and w (£) = {ux (t), w2 (0 > • • • 
ww+2 ( 0 ) e Em ^+2> is measurable; satisfying the control system x(t) = F(ty 

x(t) ,u (t), p (t)) a.e. on [0 , + oo), x (t) = x0, (t, x (t)) e A on [0 , + oo) , for 
* = 1 , 2 , , n + 2 ^ ( f ) e U ( ^ x (*)) a.e. on [0 , + oo) , and p (t) e P 

a.e. on [0 , + oo) where P = Up, ,p2, .. .,pn+2): pk > 0 , ] £ ^ = IV and 

such that the map t -+ G (t y x (t) , u(t) , p (t)) is locally Lebesgue integrable. 
This set of triples we denote by Ô and refer to it as the set of relaxed admissible 
pairs. 

The relaxed optimal control problem then consists of minimizing the func­
tional 

+ oo 

(8) J[x,u,p]=^G(t,x(t),u (t),p (t)) dt, 

0 

over the set D. Formally this problem is identical with the original problem, 
except now the requisite convexity hypotheses are satisfied. That is, for (t, x) e 
e A , the sets Q(t ,x) = {(z° , z) : z° > G (t, x> u , p), z = F (t, x , u , P), 
uke U (t y x), k = l , 2 f . . . ,n -\- 2 , ] > G P } are convex and in fact equal the 
convex hulls of Q (t, x). As a consequence of this, existence results for the 
relaxed problem are easily obtained from their corresponding non-relaxed coun­
terparts. As a representative example we give the following theorem. 

THEOREM 1. Let A , U , M yg , and f satisfy the hypotheses of Section 2. 
Further assume {i). there exists a e E 1 such that Q,a = {{x , u , p} e Q : J [x , 
û y p>] < &}^ 0 ; (ii). the growth conditon (y) holds\ (Hi), there exists an 
integrable function ip : [0 , + oo) -> E1 ^^A Z/idtf for all {x , ï i , p} e Oa , G (£ , 
x(f) y u (i) , p (t)) > ^ (t) a.e. on [0 , + oo); and (iv). the sets Q(t y x) satisfy 
the upper semicontinuity condition property (K) 

(9) §(t y x)= n cl[U {Q(t ,y) : \ x—y \ < 8 , (t y x)e A}] . 

Then the relaxed optimal control problem has an optimal solution. 

It is well known that the set of admissible pairs Q can be viewed as a subset 
of the relaxed admissible pairs Q. Thus, the infimum (when it exists) for the 
nonconvex control problem is larger than the infimum for the corresponding 
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relaxed problem. To investigate the relationship between the relaxed admissible 
trajectories and the non-relaxed ones we give the following uniform approxi­
mation theorem which generalizes the corresponding finite horizon result (see 
Cesari [6; 18.6-18.7]). For this result we must strengthen some of the hypo­
theses given in Section 2. Most notably, we require the control set U (t, x) 
to be independent of x (i.e., U (t, x) = U (t) for all xe X) and that there exists 
a bounded set V c E M such that U ( i ) g V a.e. t > 0 . 

THEOREM 2. Let X ç E w be compact and let A = [0 , + oo) x X . Let 
U : [0 , + oo) —>- 2V be a measurable closed set valued map such that the set M = 
= {(t ,x , u) : (t, x) e A , ue U (t)} is closed. Let f : M —>• En be a given con­
tinuous function and suppose there exists locally integrable functions m and k from 
[0, + oo) into E1 such that \f(t, x , u) \ <^m (t) and \f(tyx,u) — f ( t , z, u) | < 
< k (t) | x — z I a.e. in [0 , + oo), (t, x , u), (t, z , u) e M:. Let {x , îit, ^} 
denote a relaxed admissible pair for the corresponding relaxed control system such 
that for all t > 0 , x (t) e X1 where Xx Ç int (X) is compact. Then there exists 
a sequence of admissible pairs ; {xn , un}y defined on [0 , n] ; for the original system 
such that xn->x uniformly on [0, T] for all T > 0. 

This result is established by applying the corresponding finite horizon 
result on [0 , n] , for each positive integer n, to obtain a sequence {x* , u"} of 
admissible pairs defined on [0 , n] approximating x. 

When the above result is applied to the augmented control system (x° (t) , 
x (t)) = (g (t, x (t) ,u (t)) ,f(t,x(t),u (t))) , a.e. on [0 , + oo) , one obtains 
relationships between the optimal solutions of the original optimal control pro­
blem and those of the corresponding relaxed optimal control problem (see [5 ; 
4.2]). 

4. PROBLEMS WHICH ARE LINEAR IN THE STATE 

Another class of nonconvex problems is the restrictive case where g and / 
are linear in the state variables. That is, the admissible pairs {x , u} e O satisfy 
a control system of the form 

(11) x{t) = C (t)x(t) +f(t, u (t)) , a.e. on [0 , + oo) 

x (0) = x0 

as well as the control constraints 

u (t) e U (t), a.e. on [0 , + oo), 

where C : [0 , + oo). —>• En2 is an n X n matrix whose entries are locally Lebesgue 
integrable, U : [0 , + oo) ->2E f n is a set valued map with closed graph M — 
= {(t, u) : t > 0 , u e U (*)}, and / : M -> En satisfies the Carathéodory con-
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ditions. The cost functional in this case is an improper integral of the form 

+00 

(12) J [ * , « ] = [ [ {c0(t),x(t))+g(t,u(t))]dt, 
0 

where c0 : [0 , + co) ->En is locally integrable, g : M -> E1 is a Lebesgue nor­
mal integrand, and where (. , . ) denotes the usual euclidean inner pro­
duct on En. 

For models of this type it is possible to establish a Neustadt-type existence 
theorem for strongly optimal solutions without any a priori convexity conditions, 
provided certain integrability conditons are placed on the entries of the functions 
cQ and C insuring that the optimal trajectories have asymptotic equilibria and 
that the corresponding value of the functional J, given by (12) is finite. The 
proof follows classical lines (see e.g., Cesari [6 : 16.5i] and utilizes a recent ex­
tension to (j-finite measure spaces of a Lyapounov-type theorem concerning 
vector valued integrals found in Arstein [1]. We now state this existence 
theorem. 

THEOREM 3. In addition to the above hypotheses assume that (i). the 
entries of the fune fions C and cQ are Lebesgue integrable on [0 , + °°) \ (#)• there 
exists a locally Lebesgue integrable function such that \ (g (t ,u) >f(t, u)) \ < m (t) 
a.e. in t > 0 , (t, u) e M and such that 

+ 00 t 

(13) J \m (t) exp/ — f tr (C (s)) dsj dt~] < + 00 , 

0 0 

where tr (C) denotes the trace of the matrix C; {Hi), for t > 0 and xe En the 
sets Q (t, x) for the corresponding relaxed optimal control problem satisfy property 
(K); and (iv). there exists a Lebesgue integrable function <\ie L ([0 , + °°)) such 
that 

[c0 (t), x) + g (t, u) > <\> (t) , a.e. in t > 0 , 

(t, u) e M and x e ~En . Then there exists an optimal solution for the linear in 
the state infinite horizon optimal control problem. 

Extension of the above result to the weaker notions of optimality listed 
in [4] are discussed in Carlson [5]. Also in [5] the integrability conditions placed 
on the functions C and c0 are weakened. 

5 . MULTICRITERIA CONTROL PROBLEMS 

In this section we conside : problems of the type described in Section 2 
except now g : M -> E^ is a vector valued function satisfying the Carathéo-
dory conditions. In the finite horizon case this problem has been considered 
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in Cesari and Suryanarayana [7]. In fact, the discussion here is similar to their 
work. 

For such a problem we consider a partial ordering, < , defined with 
respect to a closed convex cone A Ç= Ep . That is, x < A y if and only if 
x •— ye A . With this ordering we seek an admissible pair {x* , u*} e D such 
that for all {x , u} G Q 

(14) ~J[x*,u*] <A][x,u], 

and we refer to {x* , &*} as a A-Pareto minimum. We require the cone A to 
satisfy the angle property defined as follows. 

DEFINITION 1. A closed convex cone A G E ^ has the angle property if 
there exists e , 0 ,< s < 1 , and a non-zero vector ae {ze Ep : ( z , X ) > 0 for 
all AG A} such that 

(15) A e {x e E? : ( a , x ) > s | a \ \ x |} , 

where ( . , . ) denotes the usual inner product in E^. 

The angle property permits us to reduce the above multicriteria problem 
to scalar valued problem. Specifically we have the following well known result. 

PROPOSITION 1. Let A G E^ be a closed convex cone having the angle pro­
perty, let W be any set, and let I : W -> E** be a given vector valued function. 
Then if there exists e eE? such that c < . I [x] for all xe W and if {I [x] : x e W} 
is a closed nonempty set, then any vector x* e W satisfying 

(16) (a,I[x*])=in£{(a,ï[x]):xe1W}, 

is a A-Pareto minimum of I over W. 

To investigate the existence of A-Pareto minima we define the orientor 
field for (t, x)e A as 

(17) Q A (*,*) = {(*° ,z):z°A>g(t,x,u),z =f(t ,xyu)yueXJ(t,x)}, 

and define the Lagrangian T : [ 0 , + oo) X Ew X Ew ->• EMJ { + oo} by the 
formula 

(18) T (t, x , z) = inf {(a , *°) : (s° , z)e Q~A (* , x)} , 

where we assume that T (t, x , z) = + co if (t, x) & A or if Q A (t, x) = 0 . 
It is shown in Carlson [5; Thm. 5.2.1.] that under the hypotheses that the sets 
QA {t, x) are convex and enjoy property (K) the function T is a Lebesgue nor­
mal integrand such that T (t, x , .) is convex. This allows us to define the 
Lagrange problem consisting of minimizing the improper integral 
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+ 00 

IW=JT((,*«>,*«»*, 

over all arcs xe AC,oc. In addition, we show that if x* is an optimal solution 
for this scalar Lagrange problem, then there corresponds a control u* such that 
the pair {x* , u*} e D is a A-Pareto minimum. Consequently the existence of 
? A-Pareto minimum can be proved directly through an application of Baum's 
result [3]. More precisely we have the following result. 

THEOREM 4. Let A and M be closed and let g : M ->- E*> and f : M -> En 

satisfy the Carathéodory conditons such that the growth conditon (y) holds with g 
replaced by \g \ . Let A e E^ be a closed convex cone which has the angle pro­
perty. Then if there exists a e E1 such that the set 

+00 

Q<x = \{x >u)e & • ! (0 > g {t, # (0 > u (t) ) dt < a I 7^ 0 , 

0 

the sets Q (t, x) are closed convex and enjoy property (K), and if there exists 
<|> e L l ([0 , -f- 00) ; E^) such that g (t, x , u)A > ip (t) a.e. in t > 0 , (t, x , u) e M 
the vector valued infinite horizon optimal control problem has a h-Vareto minimum. 

In addition to the above result, extensions to the A-Pareto case are also 
considered for the weaker notions of optimality when the components of the 
cost criteria are possibly divergent. For the details see Carlson [5; 5.2]. 
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