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Analisi matematica. — Nonlinear analysis. New arguments and
results. Nota II ® del Socio straniero LAMBERTO CESARI.

We continue here the discussion in part I, and we state and prove further
sufficient conditions for the existence of a solution to nonselfadjoint problems.

6. ANOTHER COROLLARY

We state and prove here, as a further corollary of (4.i), a Landesman-Lazer
type theorem for nonselfadjoint problems where again the Shaw condition is
not required. For the sake of simplicity we present it here in the situation
depicted by Corollary (4.ii) and for real valued functions. Thus we assume
that X =Y is a space of bounded functions in G,G< Rv,v > 1, with va-
lues in R.

We further take Nx=f(¢) + g (¢, x(?)), te G, xe X, with f: G —
—~R, g:GXR—-R, fand g bounded. The constants L.,d, %~ are now
such that || Hy [, <L [y |, for all ye Y,, and [[SQy [y <d |5 L,
II—Q)y |l <h| ¥l for all ye Y, and as in no. 3 we assume that ¢ is
the identity map, M is non singular, and SQo is the identity map.

(6.i)) CoroLLARY. Let g:G X R—R be a function satisfying

) xg(2,x) >0, [g(t,x)| <C, [g(t,x)—gt,y)]|=
<D |x—y|,teR,x,yeR.

(10) There are constants N, 0 < A < C, sufficiently close to C, and R >0
such that C >g(t,x) > A for x >R, te R, and —C <g(t,x) <—N for
x<—R, teR.

Let T, be compact, Y, finite dimensional, and let us assume that for the con-
stant d of no. 4 we have d < 2 (1 4 DL k). Then there are numbers ¢ ,R,,
r>0,7 >0 such thatif || flo <c, problem Ex—=—f(t) 4+ g (¢, x) has at
least one solution x = xg; + %g2 + %; , %61 € Xo1 > ¥02€ Koz » ¥1 € Xy, || %o1 llo < Ro,
s lloo <75 | % llo <7. If p=gq then ¥ =0 and xp, =0; if p > q, then
' > 0 and the problem has at least ome solution x for every x4 Xoz,
| %2 lloo < 7" -

(*) Presentata nella seduta del 15 giugno 1984,
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Proof. We take for o the identity map, and we define S :Y, X, as
in no. 3. Let Sy == [%; € Xo1, || %01 lo = Ro], Sy =[x, Xy, [| % [lo < 7], and

let xg€ Xog, || %a || <7 (thus, 7' =0, x5, =0 if p=¢g). We have only to
show that we can determine ¢, 7, Ry, p > 0 and #' > 0 such that

(11) |x—hkg(t,x) | <pR, forall |x|<R,,teG,
(12) Lh(c+C)<r,

(13) od <1,

(14) kdc+ kdD (r +7) < (1 — od) R, .

First we note that d <2 (1 4+ DLA)™* implies 1/2 < 1/d —DL 4/2,
and then for 0 < A < C, A sufficiently close to C, and for ¢ > 0 sufficiently
small, we also have

(15) 1—2/2C < 1)d— (1 + DLA&) (¢/2 C) — DL 4/2.

Let 2 > 0 be so chosen that Ck > R, and take R,—=2 Ck. Hence, R, >
> Ck >R. Now

|lx—kg(t,x) | <kC for 0<x<kC and for —kC <x <0;

fx—kg(t,x) | <Ry—kr for RC<x <R, andfor—R,<x<—kC,

‘and relation (11) certainly holds provided kC << R, and R,— kX < pR,, or
o >1/2 and p>1—(1/2C).

The last requirement implies the previous one. To satisfy (12) we just
take r =LA (c + C). Then, for ' =0, relation (14) becomes

kdc+ kdD -Lh(c+ C) <(1 —pd)Ry=(1—pd) (2Ck). or
p<1/d— (1 4+ DLA) (¢/2 C)— DLAJ2.
By (15) we see that it is possible to satisfy the requirements on p by taking
1—(/2C) <p <1/d— (1 + DL&)) (c/2 C) — DLA/2 .
Note that necessarily p << 1/d, or pd < 1, and (13) also is satisfied. Now
we have determined ¢, Ry, 7, p so that all relations (11-14) are satisfied, in
particular relation (14) is satisfied with 7' =0 and the < sign. Thus, when

p > g we can also determine 7' > 0 sufficiently small so that (14) holds as
written.

7. ANOTHER SUFFICIENT CONDITION

Here we present sufficient conditions of a different type. We shall still
make use of the decomposition X =X, + X, + X, as in no. 3, but we shall
require less on the map S:Y,— X, . Indeed, we assume that Y, and X,
have finite dimension ¢, and that S :Y,— X, is a linear transformation with



LamBerto CEesari, Nonlinear analysis, ecc. 15

S-1(0)=0. Thus, for given orthonormal bases Xo, =sp (b,...,9,), Yo=
=(wy,..., ), S is represented by a non singular ¢ X ¢ matrix M* = [m};,
i,j=1,...,q] with c=M*d, x=27¢;0;¢ Xy, y=27d; 0,€Y,, c=
=col(¢,...,¢),d=col(d,,... ,dq),ci:Ejmfjdj,izl y--+5q. Then,
there is a constant My > 0 such that || Sy || <M, |y | for all ye Y,.

(71) 'TueorREM. Let X =Y =1L, (G), let P, Q be the orthogonal projec-
tions with PX =X,=kerE, QY=Y,=kerE*, co>p>¢=>0, p=
=dimX,, ¢=dimY,, X=X, + X,, Y=Y, + Y,, and a further decompo-
sition X=X, + Xog, Xog=8p (b1,.-.,¢,), Yo=sp (0, ..., 0,), ¢ <co.
Let us assume that, for the given problem Ex — Nx , the map H is compact, and
there are constants Jo, Ry >0, >LJ,, v >0, such that (B) || Nx || <], for
all xe X; and (N,) (SQNx, x5,) <0 (or = 0) for all x=x4 + % + %,
X1 € Xor» %02€ Xoay %€ Xy, [[ %oy | =Ro, [ woa | <7, [l [| < 7. Then the
equation Ex = Nx has at least one solution x € X, & = Xq; + %gy + %1, %1 € X1 5
%02€ Xgz, %€ Xy, woe | <75 |0y | < 7. Actually, if p=gq, then ' =0,
X0s=0; if p > q, then v' > 0, and the problem has at least one solution for
every %os€ Xog, || %oy || =77

This statement is only a modification of the theorem concerning Hilbert spaces
proved by Cesari and Kannan ([3b], p. 222) by Schauder’s fixed point theorem
(see also Cesari ([le], (34.ii), p. 126) and Cesari and Kannan ([3c], (2.i), p. 752)).
In the latter reference a different proof by Kannan and McKenna was also
given. For Banach spaces an analogous theorem was proved by Cesari ([1f],
Th. 1, p. 46) (see also Cesari ([le], (37.1), p. 140), and for the case of unbounded
non linearity with limited growth (Cesari [1f], Th. 1#, p. 49) again by Schau-
der’s fixed point theorem.

Lemma. Let g:R —R be a given continuous function with finite limits
g (+ 00), g(— 00). Let G be a fixed measurable point set in R, v > 1, of finite
measure | G |. Let 6 =(¢,,...,b,) be a given orthonormal system of functions
&; € Ly (G) with the property that every function w =>b, b, +--- +b,¢,, te G,
[ =B+ ...+ b2t =1, is zero in G at most in a set of measure zero. For
any such w, let G,=[te Glw({) >0],G_=[te G |w(t) <0], so that
|G|+ |G_|=]|G|. Let M,r >0 be given constants. Then there is
some Ry > 0 such that for all o > R,, for all b with |b |=1, and for all func-
tions 2, Fe Ly (G) with || z|| <7, |F|| <M, we have

1 Jn[g(+ o0) — g (pw () + 2(t))]F(t)dt‘<s,

G+

1 f[g(—oo)—g(pw(t)+ z(t))]F(t)dt‘<e.
o

In other words, both integrals approach zero as ¢ — -+ co uniformly with respect
tob,z,F with [b]=1, |z|<r, |[F|<M.
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Proof. Here g is necessarily bounded, say |g(x) | < C for all xe R;
hence, |g(+00) |, |g(—o0) | <C, and |g(+ o0)—g(®) |, |g(—co)—
—g(x) | <2C for all xe R. Here G has finite measure, and each function
w(?) of the collection [w (t) = b, ¢, +---+ b, ¢,, | b | = 1], has the
property that w () = 0 at most in a set of measure zero in G (which may de-
pend on w). Then, by [3 ¢, (10.iv), p. 773], given € > 0 thereis y =1y (¢) > 0,
independent of b= (b,,...,b,), such that the set of points of G where
|w(t) | <y has measure <e (We have used (10.iv) of [3c] for 2=0
and a collection which need not be the kernel of an operator). Then, for
vy =17 ((12 CM)2¢?) we have

[te Gllw@® | =1bbi+ o | <y, [b]=1]] S(2CM)2e.

Thus, forA, =[te G, |0 <w(f) <], then |A, | <(12CM)2¢%,and

[rec+ oo)—g<pw(t)+z<t»]F<t)dt[SZCle(mdt
Ay Ay

<2C A, "2 ||F || <e(2CM)(12CM)1=¢/6.

Let K > (12CMr) ¢! and take B, =[te G, | |2(#) | > K]. Then
rzzfzzdtzjzzdt2K2|B+|, By < r2K-2,
G B,

and
|f[g<+ 00)—g (0w (®) + = (H) ] F (2) dt ] <2¢(|F|a
B+ B+
<2C|B, [12||F || <2CM (K7 <c6.

The given function g has finite limits g (4 00), g (— o0). Hence, given ¢
there is R > 0 such that

lg(+o0)—g(x) | <(6M)'|G|V2e forall x>R,
[g(—o0)—g(x) | <(OM)|G|Me forall x<—R,
and R depends on the given function g, on G and M, but not on the specific
function F with ||F || <M. Now take Ry >y *'(K + R), and C, =G, —
—A,—B,. Then |2(t)| <K and w(¢) >y for all £ C,. Hence, for
e >R, we have

ew()+2(@) >R y—K=R for teC,.



LaMBERTO CESARI, Nonlinear analysis, -ecc. 17

Consequently,
lg(+0) —gew (@) +2@®) | =(6M)? |G e for 2eCy,p >Ry

and
U[g(+ w0)—gew®+ s @)F O dr | <6V Ge [ 17
Ct Ct

<(6M)* |G |[V2(|G [¥2M)e=c/6 for p=>R,.

Thus for p >R, we have

[g(+0)—gw®)+2@)]1F @) =
J |

G+
(f+f +(£) < ¢f6+cl6+ cf6—c|2.

Ay By

=

The same argument holds for G_ and

; U[g(—l-oo)-é‘(pw(t)+z(t))]F(t)i:j+fS
¢ G+ G_
=¢f2+ce2=c¢ for o >R,,

and R, has been chosen independently of the particular vector b and particular
functions &, F with |b |=1, ||2|| <7, ||F || <M. This proves the lemma.

For any element we X, with ||w | =1, or equivalently, w=258¢, +

+---4+b,4,, |b]=1, let us construct the new function W (t), te G,
defined by

W (1) =3, ms(z)Jzim;@(a)w(m)da, te G.
G

Also, as before, let G, G_ denote the subsets of G where w (¢) >0,
w (t) < O respectively. Note that in the norm of L, (G) we have || w || = b, ¢, +
+'+bq¢q”=|bl:1)

U%(a)w(a)da <éillwl=1,
G

flcbi(oc) lw (@) [de <[ ([ w]=1,
G
and

2. — RENDICONTI 1984, vol. LXXVII, fasc. 1-2.
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l .
W <2 ol t Zimy & (o) w (o) dat
G

<35, |l || wsnjw@-(a) e (a) | da <%, ml| =u,
G

a fixed number depending only on S, that is, on the matrix [m] .

We consider now the problem Ex=jf(t) + g(x(¢)), te G, where E
is an elliptic uniform differential operator on G with associated boundary condi-
tions, where fe L, (G), and g:R —R is a continuous function with finite
limits g (— o0), g (+ o). We assume for E the main properties: (a) co >
>p>qg>0, p=dimker E, ¢g=—dimker E*, with given decompositions
and orthonormal bases X, =ker E = Xy, + Xg3, Xoy=5p (¢1,...,9,), Xpo=
= (dgr1s--->bp), Yo—=ker E*=3sp(w;,..., ), and we define S:Y, —
— X,y by an arbitrary nonsingular ¢ X ¢ matrix M* = [m}]. (b)Every element
we Xo, w(#)=0b ¢, +---4b,¢,, |b]==1, is zero at most in a set of mea-
sure zero in G. As for Theorem (7.1), let X =Y =L, (G), and let P, Q
be the orthogonal projections with PX =X =ker E, QY =Y,=ker E*.

(7.i) 'TuEoREM Under the above assumptions, if for every we X,
wt)=b b+ ---+b,¢,, |b]|=1, we have

Asz(t)W(t)dt—]—g(—l— oo)fW(t)dt—{—
G Gy

(18)
—{—g(——oo)fW(t)dt>0(or < 0),
G_

then there are numbers R ,r > 0, 7" > 0 such that the equation Ex = f + g (x) has
at least one solution x = x4 —+ Xgo + X1 5 %01 € Koz > %02€ KXoz, %€ Xy, || %pg || <
SR, x| <7, |l [| < 7. Actually, if p=gq, then v’ =0, x5, =0 ; if
p > q, then v > 0, and the problem has at least one solution for every x,,€ Xos,
| %oz | <7

Proof. Here g is bounded, say | g (x) | < C for all xe R, hence || Nx || =
=|f+eg@I<Ifll+ |G [¥2C=],, and assumption (B) of (7.i) is satisfied.
To prove that (N,) also is satisfied, we must find first a suitable expression for
(SQNwx, w) for w=pw (£) + %2 (£) + 2, (), ¢ >0, w()=0by, + - -+
+b,¢,, 10 |=1. Indeed, QNx=2%,d; »,, d= col (d;,...,d)), d,=
=(Nx, 0,),s=1,...,¢, and

@) 0=, ( [ () () 0r()ds) 0,0
G
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Also we have
SQNx =3;¢;d;, c=col (¢, ,...,¢), c=M*d, ¢;=3,m d,,

(SQNw) (£) =X, Z, m;, d, &; (8) = Zy my, (N, 0,) &; (1)

(SQNx , w) = f (SQNx) (2) w () dt
G
— f 3, Symt b (f) w (2) dt f (N) () o, (c2) e
G G

:f (Nx) (o) Z; o, () dox fzim;; ¢; (B) w(2)de.
G

G

We have proved that

(SQNx, ) = [fO W (@) dt + [ g (ew(®) + 5 () + 3 ) W () dr.
G G

The lemma shows that this expression approaches A as p — -+ oo uniformly
with respect to b, X, %, with |b |=1, ||x|| <7, |4 || <r. Also we
note that A is a continuous function of w, xy, , ¥, so that there is some € > 0
such that A<—2¢,0or A >2¢, for all b, x,,, x, as stated. Let R, be such
that | (SQNx, w) — A | < ¢ for all p > R, and all b, %y, , ¥, as stated. Then
(SQNx , w) <—c¢ (or >¢) for all p >Ry, we Xy, [lw||=1, and x4, %
as stated, and finally

((SQN) (xg; + Xge + x1) 5 %) <0, (or >0)

for all || xg || >Ry, [l %2 | <7, |l ay || <7r. We have proved that assumption
(No) of Theorem (7.i) holds. Theorem (7.ii) is thereby proved.

Remark. For p=gq, ;= o, , m;; = §;,, then W (t) = w (¢) , and Theo-

rem (7.ii) reduces to the Landesman and Lazer sufficiency condition. A discus-
sion on condition (18) and further considerations will appear later.

Remark. Note that w=15b, ¢; + --- 4+ b,¢,, |b|=1,s0 thatfd),;wdt:
G

=b;,i=1,...,q, and then W becomes W =2, X; m, b; 0, = Z, B, v, with
Bs=X;m.b;,s=1,...,q.
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