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Analisi matematica. — The Existence of Optimal Solutions for 
Infinite Horizon Optimal Control Problems. Nota di DEAN A. CARLSON W> 
presentata (**) dal Socio straniero L. CESARI. 

RIASSUNTO. Si considerano problemi di controllo ottimo del tipo di Lagrange 
su un intervallo infinito (0 , + oo). In connessione con esempi di problemi di econo­
mia non si assume a priori che il costo funzionale, un integrale improprio, sia finito. Si 
considerano pertanto vari problemi di ottimizzazione che sono più generali di quelli che 
sono apparsi recentemente nella letteratura. Si presentano vari risultati circa l'esistenza 
di soluzioni ottimali. Allo scopo si utilizzano proprietà di convessità e di seminormalità 
analoghe a quelle studiate da Cesari per problemi su un intervallo finito. 

1. INTRODUCTION 

We consider the existence of optimal solutions for problems of optimal 
control defined on the unbounded time interval [0 , + oo). As early as 1940, 
Cinquini [8] investigated free problems of the Calculus of Variations with a 
Lagrange-type functional of the form 

f(t,x(t),x(t))dt. 

There, as in most subsequent investigations, only those absolutely conti­
nuous functions x = x (t) , t > 0 , for which the above improper integral is 
finite were considered admissible. Recent examples arising in economies (see 
e.g. [7] or [5; 1.3]) demonstrate the need to consider functions for which (1) 
may diverge thus rendering inadequate the traditional definition of optimality. 
In order to study such problems, a heirarchy of weaker concepts of optimality 
has been introduced as we describe below. 

The question of existence of optimal solutions with respect to these weaker 
notions has been investigated in [4], [9], and [11]. There, convexity hypothe­
ses stronger than those utilized when considering the traditional definition of 
optimality are made (see e.g. [3], [2], and [1]). Here, we present several results 
where these strong convexity hypotheses are replaced by the now classical 
convexity and seminormality conditions in accord with the work of Cesari on 
problems of optimal control with finite horizon [6]. 

(*) Assistant Professor, Department of Mathematics and Statistics, University 
of Missouri-Rolla, Rolla, Missouri 65401. 

(##) Nella seduta del 15 giugno 1984. 
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2 . C O N C E P T S O F O P T I M A L I T Y 

We consider an optimal control problem consisting of minimizing an 
integral functional of the form 

+ oo 

(2) ] [x ,u] = j g(t ,x{t).,u(t))dt 

0 

over all pairs {x , u) : [0 , + oo) -> E n+m satisfying a control system described by 

(3) x (t) =f(t, x (t) , u (t)) , a.e. on [0 , + oo) ; 

subject to state constraints 

(4) (t, x (t)) e A , on [0 , + oo) ; 

control constraints 

(5) u (t) e U (t , x (t)) , a.e. on [0 , + co); 

and the fixed initial condition 

(6) x (0) = #0 . 

Here A Ç [0 , -j- oo) X En is a closed set and U is a set-valued map from 
A into Em with closed graph M = {(t, x , u) : (t, x) e A , ue U (t ,x)} . The 
function g : M -> Ex is a normal integrand in the sense of Rockafellar [10] and 
/ : M -> En is a Garathéodory function. 

The pairs of functions {x , u] satisfying the constraints (3) to (6) will be 
called admissible if x is locally absolutely continuous,, u is Lebesgue measurable, 
and if the map t —>g (t, x (t) , u (t)) is locally L-integrable. The class of all 
admissible pairs is denoted by O. We assume that Q ^£ 0 , • and refer to the 
problem of optimizing J over Q, as &. 

We now define the weaker notions of optimality referred to above. 

T 

DEFINITION 1. Let A (T) = I [g(t, x (t), u (t)) —g'(t, x* (t), u* (t))] dt. 

0 

An admissible pair {x*, u*} is called : 

(i) strongly optimal if J [x* , u*\ < + oo and if for all {x , u\ e D 
T 

lim J g (t, x (t), u (t)) dt>] [x* , a»];" 

0 
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(ii) overtaking optimal if, for all {x,u}eQ,, lim A (T) > 0; 
T-> +00 

(iii) catching up optimal if, for all {x , u} e Q , lim inf A (T) > 0; 
T-»+oo 

(iv) sporadically catching up optimal if, for all {x, u} e Lì , 
lim sup A(T) > 0 ; and 

T - * +00 

(v) finitely optimal if for each T > 0 and all {x, u} e Q, with 
* (T) = **(T) , A ( T ) > 0 . 

These definitions are listed in descending order, with the notion of strong 
optimality coinciding with the usual definition of a true minimum. Examples 
show that these notions of optimality are independent. For details, see Carlson 
[5 ; 1.3], For brevity we consider here solutions which are optimal in he sense 
of (iii) and (v). 

The convexity and seminormality conditions we require are expressed in 
terms of the orientor field for the system defined on A by 

Q (t, x) = {(z° , z) : z° >g (t, x ,u), z =f(t, x , u), u e U (t, x)} . 

We assume these sets are convex and satisfy the upper semicontinuity con­
dition property (K) given by 

(K) Q{t,x)= n d[V{Q(t,y):{t,y)eki \x— y \ < $}], 
S > o 

where | . | denotes the usual euclidean metric in En. 

REMARK 1. The results of [4], [9], and [11] require the sets T(t) = 
{(x , z° , z) : (t, x) e A , (#° , z) e Q (t, x)} to be convex for t > 0 . Clearly 
this assumption is stronger than the convexity hypothesis given above. 

Finally, we consider the set of admissible trajectories as a subset of the space 
AClocof locally absolutely continuous functions equipped with the topology of con­
vergence of initial values and weak Lx-convergence of derivatives on compact sub­
sets of [0, +00) . The needed weak compactness of the set of admissible trajectories 
is insured by the use of an extension of the standard growth condition (y) utiliz­
ed by Cesari [6; 10.4] and others. 

DEFINITION 2. The functions / and g are said to satisfy the growth con­
dition (y) provided for each z > 0 and T > 0 , there exists and L T > 0 and 
^ g T e L 1 ([0 , T]) such that g (t, x ,u) < L T and \f(t,u9u) | < ty s T (t) + 
+ eg (t, x , u) a.e. in t > 0 , (t, x , u) e M . 

3. EXISTENCE OF OPTIMAL SOLUTIONS 

The existence of a strongly optimal solution is insured by the following 
result of Baum [3]. 
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THEOREM 1. Let A and M be closed, let f be a Caratheodory function and 
assume that g is a normal integrand satisfying the growth condition (y). If the 
sets Q(t-,x) are nonempty convex and satisfy (K), if there exists an oc e E1 such 
that Qa = {{x , u} e Q : J [x , u] < a} 7̂= 0 , and if there exists an L-integrable 
function <j) such that, for all {x,u}e Qa , g (t, x (t) , u(i))>§(t) a.e. on 
[0 , + 00) ; there exists a strongly optimal solution for the problem 8P. 

To establish existence results for the concepts (ii) to (iv) of optimality in 
Definition 1, one seeks an appropriate auxiliary problem to which Theorem 1 
can be applied. In the case of catching up optimality, such an auxiliary pro­
blem is obtained by replacing the original functional with one equivalent to 
it in the sense of Caratheodory. That is, we consider the functional 

+00 

(7) I [ , , u ] = /M.,»W,«W>d,, 
0 

where h(t, x ,u) =g (t, x ,u) — St(t, x) — S^ (t, x) .f(t, x , u) for a given 
differentiable function S : A —> E1 satisfying (i) lim sup S (t, x (t)) < + 00 for 

all admissible x , (ii) there is an L e E1 such that lim S (t, x(t)) = L for all 

{x ,u}e O with I [x , u] < + °° > a n d (in) h(t, x ,u) > 0 a.e. in M. We will 
refer to the optimization problem with the functional (7) replacing (2) as &*. 
The relationship between problems 0* and 0* is given by the next result. 

THEOREM 2. Let A and M be closed, f be a Caratheodory function, and g 
be a normal integrand. Then if {x* , u*} is a strongly optimal solution of 0* , it 
is a catching up optimal solution of & . 

This result is established by showing that the asymptotic properties of 
S (t, x (t)) given above imply, in the case that I (x , u) < + 00 , that 
lim inf A (T) > 0 , while lim inf A (T) = + 00 if I (x , u) = + 00 . 
X-> +00 . T - ^ +00 

We now combine the first two theorems to obtain the following existence 
result for catching up optimal solutions. 

THEOREM 3. Let A and M be closed, let f be a Caratheodory function and 
assume that g is a normal integrand satisfying the growth condition (y) . 

Further let S satisfy the conditions (i) to (iii) given above such that the map 
(t, x) -* St (t, x) + §>x (t, x) is a Caratheodory function. Then if there exists 
a G E1 such that Q* = {{x , u} e O : l[x , t f ] < a } ^ 0 and if the sets Q (t, x) 
are nonempty, convex, and satisfy property (K) there exists a catching up optimal 
solution for 0. 

This result contains the basic existence results of [4], [9], and [11] as is 
shown in [5; 3.3C]. In particular, we show there that the notion of supported 
trajectories used by those authors can be viewed in terms of Caratheodory's 
notion of equivalence. 
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In order to establish the existence of finitely optimal solutions, we consider 
a sequence rVn -> + °° a n d corresponding finite horizon problems on [0 , Tn) . 
Here, we require, first a lower closure theorem, which generalizes that of Ce­
sari [6], and which guarantees that a limit of solutions to the finite horizon 
problems will be a finitely optimal solution to &. In addition, we need the fol­
lowing continuous dependence property for the finite horizon problem. 

DEFINITION 3. The control system is said to satisfy the continuous de­
pendence property (C) on [0 , T] provided for any sequence an->a0 in En, 
and for any sequence of optimal solutions {xn} of the finite horizon problems 

T 

(0>n) minimize < Ì g (t, x (t) , u (t) dt : {x , u} is admissible, x (T) = a 

o 

which converges pointwise on [0 , T] to an admissible trajectory x°, with cor­
responding control u° , one has {x°, u°} is an optimal solution for ^ 0 . 

While the problem & exhibits this continuous dependence property for 
each T > 0 under the strong convexity requirements of [4], [9], and [11] (see 
Remark 1) significantly milder conditions suffice as we have shown in [5; 3.5A]. 
When property (C) holds we can establish the following existence theorem for 
finitely optimal solutions. 

THEOREM 4. Let A and M be closed^ f be a Carathêodory function and g be 
a normal integrand satisfying the growth conditon (y). Assume further that there 
exists a locally integrable function ^ with \ g (t, x ,u) | < ^ (t) a.e. on [0 , + °°) > 
(t, x , u) e M , and that the sets Q (t, x) are convex and satisfy property (K). 
Then if & satisfies condition (C) for each T > 0 , 0* has a finitely optimal solution. 

Acknowledgments. The author wishes to thank Prof. T.S. Angeli of the 
University of Delaware, Newark, Delaware, for many helpful discussions and 
constant encouragement. 
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