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Analisi matematica. — Nonlinear analysis. New arguments and 

results. No ta I <*) del Socio straniero L A M B E R T O CESARI. 

RIASSUNTO. — Si presentano condizioni sufficienti in forma astratta per l'esistenza 
di soluzioni di equazioni operazionali non lineari la cui parte lineare non è autoaggiunta. 

1. INTRODUCTION 

Recent results of Cesari-Bowman [2] on non selfadjoint non linear pro­
blems for ordinary differential equations, of Cesari-Pucci [4b] on non self-
adjoint non linear problems for elliptic differential equations, and of Cesari-
Kannan [3d] and Cesari-Pucci [4a] for hyperbolic problems were obtained 
by certain new arguments. We unify here the main points of the argu­
ments in a slightly more general situation, to obtain existence theorems for 
solutions of operator equations (4.i), (7.i), (7.ii) and corollaries. In par­
ticular we formulate, for non selfadjoint problems, some sufficient conditions 
of the Landesman-Lazer type for existence of solutions. 

2. T H E ALTERNATIVE METHOD 

Let us consider the operational equation 

(1) E# = N# , xe X , 

where E : D (E) cz X -* Y , N : X ^ Y are operators from a Banach space X 
into a Banach space Y, E linear with domain D (E) c X, possibly non self-
adjoint, with ker E possibly non trivial (resonance), and N not necessarily linear. 
Usually, E is a linear differential operator in a bounded domain G of Rv , v > 1 , 
with associated linear homogeneous boundary conditions. Let P : X ->*X , 
Q : Y—>Y be projection operators (i.e., continuous, linear, idempotent) with 
X0 = P X 3 ker E ' ,X 1 = ( I — P ) X , Y 0 = Q Y = ) k e r E * where E* is the 
adjoint of E , Yx = ( I — Q) Y , where Yt is the range of E restricted to 
Xj n D (E). Thus, we have the decompositions X = X0 + Xj , Y = Y0 + Yt 

(direct sums), and since E is one-one and onto from Xj O D (E) to Yl9 the in-

(*) Presentata nella seduta del 15 giugno 1984. 
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verse operator H : Y -> X Pi D (E) exists as a linear operator. The following 
relations usually hold: 

(k,) H ( I — Q ) E = I — P , (k2) QE = E P , (k3) E H ( I — Q ) = I — Q . 

Under these assumptions, then (1) is equivalent to the system of auxiliary 
and bifurcation equations 

(2) x = P * + H.( I—Q)Nff , 

(3) Q ( E — N ) * = 0 . 

We refer for details to Cesari [e.g., labede], and particularly to [le] where 
it is mentioned how this system of equations can be related to fixed point theo­
rems and other important tools of analysis. For applications we refer to the 
same papers, and particulary to [le] also for references to the many 
authors who have used this process. As was mentioned in [le], the bifur­
cation equation (3) expresses in a global abstract form that process of " ca­
sting out the secular terms " which Laplace used step by step in problems 
of perturbations. The decomposition (2, 3) has been used in problems with 
strong nonlinearities by many authors (cf. [le]). Note that, for X0 = ker E? 

then relation (^a) reduces to QE = 0 = EP, and equation (3) to QN# = 0 . 
While X0 = ker E in most applications, the choice of X0 larger that ker E has 
been relevant in a number of applications, as in the direct proof in [7] of the 
fundamental theorems for linear ordinary differential equations in the complex 
field (Cauchy, Frobenius, Perron, Lettenmeier), in the proof that it is always 
possible to make H a contraction map ([la] for Hilbert spaces, [6] for Banach 
spaces), in the proof [Id] that the use of finite elements for problems at reson­
ance can be framed in the alternative method, and in the recent proof concerning 
Dirichlet series solutions of differential equations [5]. 

3. T H E TRANSFORMATIONS S AND a 

Let >̂ = dimX 0 , <7 = dim Y 0 . We shall need the following assumption: 
(*) (a) oo >p > q > 0 with a decomposition X0 = X01 + XQ^, dim 

X01 = #; (b) There are continuous maps G : X01 —*Y , S : Y0 - ^X 0 1 such that 
S-1:(0) = 0 and SQ<r : X01 —* X01 is the identity map. 

First dim X02 =p — q if oo > p> q > 0, dim X02 = coiioo=p > q > 0 , 
and Xo2 istrivial if oo > p = q > 0 . Now, under assumption (*), problem 
(l)y hence system (2), (3), is equivalent to the fixed point problem for the 
transformation T, or (#0 l , x02, x^) -> (^0i > 0̂2 > î)> defined by 

Tj : x, = H (I — Q) N (x0i + x02 + x,) , 

(4) T { T a : ^ 1 = *01 + * S Q ( E — N X ^ + ^ + ^ i ) , 

^ 3 • *^02 : = = ^02 > 
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where k is a positive constant, and x = x01 -f x02 -f x1 , x = £0i + #oa + #1 > 
#01 > #01e X0 1 , #02, %j G X02 , i j , ^ e Xj . Actually, we shall keep x02 fixed 
in X02 (thus, x02 = 0 if 00 > p = q > 0), so that T reduces to a map (x01 , #,) -> 
-> (x0] , âCj) defined by the first two relations in (4). Moreover, we shall rewrite 
T2 in the following form 

(5) T 2 : xm = (*w — SQ ex xm) + SQ (a*01 + k (E — N) *w) 

— k SQ [(E — N) *01 — (E — N) (*w + oc02 + * , ) , 

where the first term in the second member is zero. 

Concerning assumption (*) we note that, whenever X = Y, or at least 
X01 c= Y, we can always take a to be the inclusion map j : X01 —> Y. If we as­
sume 00 > p > q > 0 , X = Y = L2 (with inner product (u , v) and norm 
u = (u, z/)1/2), we can take orthonormal bases in X0 and Y0, say X0 = sp (fa , 
. . . , fa), Y0 = sp (coj . . . , <ùQ), and assume that we may take the bases in 
such a way that the qx <? matrix M = [(cos, fa), s , / = 1 ,• . . . , q] is non sin­
gular. Then we take Xor = sp (fa , . . . , <|>ff) , X02 = sp (fa+i , . . . , fa), (X02 tri­
vial if p = q), and we may define S : Y0 —* X0 as follows: For y e Y0 , or y = 
= Ssdf co, with d* = col (df , . . , , d*), df = (y , *>,), take x = Sy = 2 , d, fo 
with d = col (di , . . . , dq), d = M- 1 d # . Then obviously, S"1 (0) = 0 since M 
is non singular. On the other hand, if x e X01 a Y , x = 2^ q cj><j, c = col 
(^ , . . . , ^ ) then 

Q x = 2 , (a?, cos) cos (*) = 2 , (S< ^ fa , cos) cos (*) == 

= 2 , (S^ (co, , fa) c%) co, (*) = S s cf cos (*) , 

where c* = col (cf , . . . , c* ), £# = Mc. Thus, SQ x==Hic!i fa , c = col 
(^ , . . . , c'q), c = M _ 1 (Mc) = c, and SQa is the identity map on X01. Note 
that above we have By = M _ x y . 

4. A N EXISTENCE THEOREM 

For the sake of simplicity we assume here that X0 = ker E, Y0 = ker E # , so 
that equation (3) reduces to QNx = 0, and T 2 reduces to x01 = x01 — k SQNx . 
Let L, d, h be the norms of H , S Q , I — Q, or at least constants such that 
II % ||x < L || y ||Y for yeYit and || SQy | |x <d\\y ||Y , || (I - Q ) y ||Y < 
< h \\y ||Y for ye Y , and assume that assumption (#) holds. 

(4.i) THEOREM. Let C , D , R0, r , p > 0 and r' > 0 be constants such that 

|| Nx ||Y < C for all xeX, \\ x | |x < R0 + r + r' , 

|| N«? — Ny | | Y < D 11^—y ||X /or «// * , y € X , || x | |x , | | j l l x < 

< R 0 + r + r ' , 
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|| ax01 — k Nx01 ||Y < p R0 for ali xOÌ e X0 1 , || x01 | |x < R0 , 

LAC < r , pd < 1 , KD (r + r') < (1 — pd) R0 . 

Assume that T is a compact map from X into X. Then problem Ex = N# 
Adtf <z£ foas£ one solution x e X , || a? || <: R0 + r + r ' . Actually y r' = 0 z/̂ > = # ; 
<awrf j/"^) > q ,r' > 0 , £/œ# ^ problem has at least one solution x for every 

^02 ^ -^02 > 11 ^02 11 _ r • 

Proof Let S0i , S3 denote the balls in X0] , X3 of center the origin and 
radii R0 , r respectively. Let x02 be an element of X02 with || x02 \\ < r' (x02 = 0 
if r' = 0). Let Q = S0] X {#02} X Sv Let T denote the transformation defin­
ed by (4) on S0i X {#02} X Si (with E — N replaced by — N. Then, for every 
pair (x01, Xj) e S01 X Si we have 

II Si llx = Il H (I — Q) N (x01 + x02 + x,) | |x < LAC < r , 

II £01 llx = II *oi — k SQN (*oi + x02 + x,) ||x 

= II (*OJ — SQ GX01) + SQ (ax01 — kNx01) + kSQ (N^oi — N (x01 + x02 + x2) | |x 

< 0 + pdR0 + kdD (r + r') < R0 . 

Thus, T maps S01 X {xQ2} X S1 into itself. Since T is compact, by Schau-
der's fixed point theorem, T has at least one fixed point (x01, xQ2, x1) = T (x01, 
x02, xt) in S0i X {x0±} X S3 , that is, x = x0i + x02 + x1 is a solution of (2), (3), 
hence of (1). 

If Y0 is finite dimensional, so is X01, and if T3 is known to be compact, then 
T 2 has finite dimensional range, hence T2 also is compact, and so is T. 

As a particular case we assume now that X = Y is a space of bounded vec­
tor functions on a bounded domain G of R v , v > 1, with values in Rs, s > 1, 
and II x | |x = || x H^ = Sup [ | x (t) | , t e G], where | | is a norm in R s . We 
assume that N is of the form N# = / (t)+g (t, x(t))9 te G , * . e X , wi th / : G -> 
- > R s , ^ : G x R ^ R s , both / and g bounded. 

Let 00 > p > q > 0, assume that M is not singular, and let S : X01 -> Y01 be 
defined as in no. 3. Let L , d , h be constants such that || Hy H^ < L || y W^ 
for all yeYly and \\SQy\L <d\\y\U,\\(I-Q)y\L<h\\y\L forali 
ye Y'. We take for G- the identity map. 

(4.ii) COROLLARY. Let 00 > p > q > 0 and let c , C , D , R0 , r > 0 and 

r' > 0 be constants such that 

l i / L < ^ \g{t,x)\<C for all * e G , * e R M * I < R o + r + r', 

\g(t,x)—g(t,y)\<D\x—y\ forali te G, x,yeRs, 

I x I , I y I < R0 + r + r', 

I x '— kg(t, x) I < pR0 for all x e Rs, | x \ < R0 , t e G , 

LA (c + C) < r , pd < 1 , kdc + kdD (r + r') < (1 — pd) R0 . 

file:////SQy/L
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If T, is compact, then there it at least one solution xofEx = N# with \ x | < 
<Ro + r + r' . Actually, r' = 0 if p = q ; tftó if p > q , r' > 0, then the 
problem has at least one solution x for every x02e X0 2 , || x02 W^ < r' . 

Proof The proof is the same as for the theorem, where relations (8) are 
now replaced by 

| | ^ | L < | | H ( I - Q ) [ / ( 0 + ^ ( ^ * ( 0 ) ] L < L A ( ^ + C ) < r , 

II »oi Hoc < II (*oi — SQa*oi) + SQ (<JX01 — kg(t, x01) + &SQ [£ (*,*0i) — 

— g (t9xu + x02 + x,)] — k SQ f(t) || < 0 + dpR0 + M D (r + r') + kdc < R0 . 

5. DIFFERENT TOPOLOGIES 

In [2], [4b], [4a], [3d] we considered various situations where points of the 
arguments above could be used by suitable choices of the spaces X , Y . 

(a) In [2] we considered non selfadjoint problems for ordinary differen­
tial equations, say Ex = #<*> + E,-/*, (t) x^-V =f(t) + g (t, x (t)) , t e [0 , a] c 
c R, pj of class Cn~J', with linear homogeneous boundary conditions involving 
x«)(Q)yx«)(a),j = Q, 1 , . . . ,n — 1 . H e r e / : [0 , a] -*R y g : [0 , a] X R -» 
-> R are continuous bounded functions. By first taking X = Y = L2 [0 , a] , 
we defined P and Q as the natural orthogonal projection operators onto X0 = 
= ker E , Y0 = ker E*, of dimensions p,q>co>p>q>0, we took a the 
identity operator, and we defined S as in no. 3. Then we restricted X , Y to 
X # = Y # = C [0 , a] , and then rV1 : Xx -* Xx is compact in the topology of 
C since its range is contained in O [0 , a] n > 1. The corollary applies. 

(b) In [4b] we considered non selfadjoint elliptic equations of order 
2m , m > 1 , Ex = N# in a number of situations. In any case, with X = Y = 
= L2 (G) , G cz Rv , v > 1 , P and Q could be defined as the natural orthogonal 
projections of X and Y onto X0 = ker E and Y0 = k e r E # respectively, of di­
mensions co >p > q >0 , q assumed to be finite. We assumed further that 
S could be defined as in no. 3 with M non singular. Let N# =f(t) + g (t, 
Dx), te G, with bounded functions/ : G —> R , £ : G X R^ - * R ,g continuous, 
where g depends on t and on the system ~Dx of the [x derivatives of x in G of 
orders 0 <' | a | < k0 < m . 

Assume that the linear homogeneous boundary conditions are expressed in 
terms of partial derivatives of orders 0 < | a | < k0 . Then we considered a space 
Z , W c H f f l c Z c H f o c L 2 (G), such that the imbedding maps j \ : W -> Z , 

j 2 : Z -* Hko are continuous, and j \ is compact, and we took X* = Y* = Z . 
Then Tj as a map from X3 to Xx is compact since the range of Tx is in W, and 
the theorem applies for weak solutions. We called Z the intermediate space. 

23. — RENDICONTI 1984, vol. LXXVI, fase. 6. 
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For instance, for 2 (m — k0) > v , by Sobolev imbedding theorem all ele­
ments x e Hm have distributional partial derivatives D a x, 0 < | a | < k0, all 
bound d functions in G (and continuous in the interior of G). In this situation, 
fo rZ = H*°, or Z = W*0'00 (G), the theorem applies with X* = Y* = Z. As 
a further particular case, for k0 = 0 , and 2 m > v , all elements xe Hw (G) 
are bounded functions in G. Then for X # = Y # = Z = L ^ (G) the corol­
lary applies. 

(c) In [3d] and [4a] we considered certain self-adjoint hyperbolic pro­
blems in R2 with periodicity conditions reducing the problem to an interval 
G in R2. We took for X = Y a suitable space of continuous functions on G, 
and for P and Q different projection operators of X and Y onto X0 = ker E , 
Y0 = ker E # , E = E # , of infinite dimension. Again we had N# =f(t, s) + 
+ g (t, s , x (t, s)) with / and g bounded, and T 2 was not compact in C. We 
then restricted X0 to a subset X* of X0 , X* convex and closed in C, made up 
of Lipschitzian functions on G, and such that T 2 maps X* into X*. Now 
both rT1 and T 2 are compact on Xx and X^ respectively, and T is compact on 
X, X Xo . 

Remark 1. For numerical examples of problems mentioned in parts (a), 
(b), (c) above we refer to the same paper [2], [4b], [4a], [3d]. 

Remark 2. In [4b], and hence in part (b) above, it is not necessary that 
E be elliptic. All that is needed is that decompositions X = X0 + X x , Y = 
= Y0 + Y3 occur with projection operators P , Q so that PX = X0 = k e r E , 
QY = Y0 = ker E*, oo >p > q > 0 , q finite, with p = dim X0 , q = dim Y0 , 
and a subspace X01 of X0 of dimension q , maps G and S as in no. 3, and H so 
as (^23) hold. Examples of this situation will be exhibited elsewhere. 

Remark 3. For self adjoint elliptic problems of order 2m, say 

(Ex)(t)=f(t)+g(x(t))y teG, xeH, 

with E elliptic and self adjoint, and ker E = ker E* = sp (^ , . . . , §q), g : 
R -> R , g continuous, with finite limits g ( + 00) and g (— 00), and for every 
element w e ker E, let G + , G~ denote the subsets of G where w > 0 and w < 0 
respectively. Then Landesman and Lazer [8] proved that the relation 

ifwdt + g ( + 00) I I a; I df — g (—co) \w\dt >0 (or < 0) 

G G+ G-

for every w e ker E , w ^ 0 , 

is a sufficient condition for Ex =f-{- g(x) to have a solution xe H^. Their 
proof for m = 1 was extended by Williams [ l ib] to any my and was motivated 

file:///w/dt
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by the alternative method. While we referred to a great many extensions in [le], 
we only mention here that Shaw [10] extended the statement above to non-
selfadjoint elliptic problems under the restriction that ker E = sp % , . . . , ([> ) 
and ker E* = sp (coj, . . . , cô ) have the same dimension and that the bases 
can be chosen in such a way that every element w = yLici cj>$ and corresponding 
element co = 2 ci cô  share the same regions of positivity and negativity in G, 
that is, w (t) co (t) > 0 in G . 

We also mention in connection with the Landesman-Lazer theorem 
that, if the values of g (x) lie in the interval [g (— oo), g ( + oo)] , then the 
condition above with > replacing > is a necessary condition for the problem 
Ex = / + g (x) to have a solution. 


