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Analisi matematica. — Nonlinear analysis. New arguments and
results. Nota I ®) del Socio straniero LAMBERTO CESARI.

RiassuNTO. — Si presentano condizioni sufficienti in forma astratta per l’esistenza
di soluzioni di equazioni operazionali non lineari la cui parte lineare non & autoaggiunta.

1. INTRODUCTION

Recent results of Cesari-Bowman [2] on non selfadjoint non linear pro-
blems for ordinary differential equations, of Cesari-Pucci [4b] on non self-
adjoint non linear problems for elliptic differential equations, and of Cesari-
Kannan [3d] and Cesari-Pucci [4a] for hyperbolic problems were obtained
by certain new arguments. We unify here the main points of the argu-
ments in a slightly more general situation, to obtain existence theorems for
solutions of operator equations (4.i), (7.i), (7.ii) and corollaries. In par-
ticular we formulate, for non selfadjoint problems, some sufficient conditions
of the Landesman-Lazer type for existence of solutions.

2. 'THE ALTERNATIVE METHOD

Let us consider the operational equation
@) Ex=Nx , xeX,

where E: D(E)c X —Y , N:X —Y are operators from a Banach space X
into a Banach space Y, E linear with domain D (E) < X, possibly non self-
adjoint, with ker E possibly non trivial (resonance), and N not necessarily linear.
Usually, E is a linear differential operator in a bounded domain G of R* ,v > 1,
with associated lnear homogeneous boundary conditions. Let P :X —X,
Q:Y — Y be projection operators (i.e., continuous, linear, idempotent) with
Xo=PX > ker E,X;=(1—P)X,Y,=QY oker E¥ where E* is the
adjoint of E, Y; =(I —Q) Y, where Y, is the range of E restricted to
X, N D (E). Thus, we have the decompositions X =X, + X;, Y=Y,+ Y,

(direct sums), and since E is one-one and onto from X, ND (E) to Y,, the in-

(*) Presentata nella seduta del 15 giugno 1984.
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verse operator H : Y —X MD (E) exists as a linear operator. The following
relations usually hold:

(k) HI—QE—I—P, (k) QE—EP, (k) EH(I—Q) —I—Q.

Under these assumptions, then (1) is equivalent to the system of auxiliary
and bifurcation equations -

2) x=Px+ HJ—Q)Nx,
) QE—N)x=0.

We refer for details to Cesari [e.g., labcde], and particularly to [le] where
it is mentioned how this system of equations can be related to fixed point theo-
rems and other important tools of analysis. For applications we refer to the
same papers, and particulary to [le] also for references to the many
authors who have used this process. As was mentioned in [le], the bifur-
cation equation (3) expresses in a global abstract form that process of * ca-
sting out the secular terms” which Laplace used step by step in problems
of perturbations. The decomposition (2, 3) has been used in problems with
strong nonlinearities by many authors (cf. [le]). Note that, for X,=ker E,
then relation (k,) reduces to QE =0 =EP, and equation (3) to QNx=0.
While X, =ker E in most applications, the choice of X, larger that ker E has
been relevant in a number of applications, as in the direct proof in [7] of the
fundamental theorems for linear ordinary differential equations in the complex
field (Cauchy, Frobenius, Perron, Lettenmeier), in the proof that it is always
possible to make H a contraction map ([l1a] for Hilbert spaces, [6] for Banach
spaces), in the proof [1d] that the use of finite elements for problems at reson-
ance can be framed in the alternative method, and in the recent proof concerning
Dirichlet series solutions of differential equations [5].

3. 'THE TRANSFORMATIONS S AND ¢

Let p—=dim X, , ¢=dimY,. We shall need the following assumption:

(*) (@) oco>=p=>¢g >0 with a decomposition X,=X, + X, dim

X1 =¢; (b) There are continuous maps ¢ : Xo; > Y , S : Y, > X, such that
S—*(0) =0 and SQgo : X, — X, is the identity map.

- First dim Xg, —=p —qifco > p > ¢> 0, dim X, =coifco=p > ¢ >0,
and X,, istrivial if co > p=¢ >0. Now, under assumption (*), problem
(1), hence system (2), (3), is equivalent to the fixed point problem for the
transformation T, or (x,, , %gs , ¥;) — (Toy » Tos » Ty), defined by

T, : 2 =H (I — Q) N (v + %2 + ;) ,
“4) T (T, : Bgy =g, + & SQ (E — N) (o5 + %02 + %)

Ty : Zoy == Xz »



LamBERTO CESARI, Nonlinear analysis, ecc. v 341

where k is a positive constant, and x ==y + %z + %, , T="To; + Tpa + Z; ,
Koy » Tor € Koy s Xog» Toa € Koz » %, % € X;. Actually, we shall keep xy, fixed
in Xg, (thus, xp, =0 if co > p = ¢ > 0), so that T reduces to a map (x,, , x;) —
— (Zo; , T,) defined by the first two relations in (4). Moreover, we shall rewrite
T, in the following form

(5) ‘ T, : Boy = (%5 — SQ 0 %) + 5Q (0% + k(E —N) Xo1)
—kSQ[(E —N) x4 — (E —N) (w1 + %02 + 1),

where the first term in the second member is zero.

Concerning assumption (*) we note that, whenever X =Y, or at least
Xo = Y, we can always take ¢ to be the inclusion map j: Xy — Y. If we as-
sume 00 >p >¢g >0, X=Y =L, (with inner product (#,v) and norm
u = (u, w)'?), we can take orthonormal bases in X, and Y,, say X,=sp (¢,
39, Yo=sp (e ..., »,), and assume that we may take the bases in
such a way that the ¢x ¢ matrix M =[(w;,¢;), s,2=1,...,¢] is non sin-
gular. Then we take Xy =sp (¢, ..., d)), Xop=5P (dyr1s--+>Pp)y (X tri-
vial if p =9¢q), and we may define S : Y, > X, as follows: For ye Yy, or y =
=3d¥ o, with d* =col (d},...,d)), df =(v, w,), take x =Sy =2,d; ¢,
with d =col (d,,...,d)), d=M-*d*. Then obviously, S-*(0)=0 since M
is non singular. On the other hand, if xe Xy, Y, x=2,¢; ¢;, c=rcol
(ery...,¢c,) then

Q=3 (v, 0) 0, () =2, (5 i, 0) 0, () =
=3, (Bi(or, ) @) 05 () =, % 0,(),

where ¢ =col (¢} ,...,cF ), ¢ — Me. Thus, SQx=23;c.d;, ¢’ = col

(¢;s...,c), ¢ =M1 (Mc)=c, and SQo is the identity map on X,. Note
that above we have Sy=M-1y.

4. AN EXISTENCE THEOREM

For the sake of simplicity we assume here that X,=ker E, Y,=ker E*, so
that equation (3) reduces to QNx =0, and T, reduces to x, = %, — & SQNw .
Let L, d, h be the norms of H, SQ, I —Q, or at least constants such that
[Hyllx <L|[lylly for yeY;, and [[SQy llx <dlyly, [ T—Quly <
<h|yly for ye Y, and assume that assumption (*) holds.
(4.1)) Tueorem. Let C,D,Ry,7,p > 0and »' > 0 be constants such that
INx |y < C for all xeX,|xlx <Ro+r-+7,

INe —Nylly =Dllx—ylx forall x,yeX,|xlx,[ylk =<
<Ry+r+7r,
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| 0%y — & Nuxgy [y <o Ry for all  xy € Xop, || %, Ix <Ry,
LhC <r,pd <1,ED(r+7)<(1—pd)R,.

Assume that 'T' is a compact map from X into X. Then problem Ex — Nx
has at least one solution xe X, || x || <Ry + 7+ 7' . Actually, v’ =0if p=gq ;
and if p > q,v" > 0, then the problem has at least one solution x for every
%02 € Xoa , || %0 | < 7"

Proof. Let S, S; denote the balls in X, , X, of center the origin and
radii Ry, 7 respectively. Let xy, be an element of Xg, with || % || <7 (%92 =0
if 7 =0). Let Q=35 X {%,} X S;. Let T denote the transformation defin-
ed by (4) on Sy, X {xp} X S; (with E— N replaced by — N. Then, for every
pair (%o , %) € So; X S; we have

1% Ix =I1HT—Q)N (% + %2 + %) lx < LiC <7,
| Zor llx = Il %01 — & SQN (%01 + %2 + %) [Ix
== [ (%0) — SQ 6%01) + SQ (0%, — kNagr) + £SQ (Naigy — N (0, + %2 + %1) lIx
<0+ pdRy + kdD (r - 7') <R,.

Thus, T maps Sy, X {45} X S, into itself. Since T is compact, by Schau-
der’s fixed point theorem, T has at least one fixed point (xy; , &gy , #;) =T (%y ,
Xz, #1) in Sy X {w,.} X Sy, that is, ¥ = &, + %2 + &; is a solution of (2), (3),
hence of (1).

If Y, is finite dimensional, so is X, and if T, is known to be compact, then
T, has finite dimensional range, hence T, also is compact, and so is T.

As a particular case we assume now that X =Y is a space of bounded vec-
tor functions on a bounded domain G of R*,v > 1, with values in R¥,s > 1,
and ||« |lx = | % |lo="Sup[| x(¢) |, te G], where | |is a norm in Rs. We
assume that N is of the form No =f (¢)+g (¢, x(?)),te G,xe X, withf: G —
—~R*, g:G X R*—Rs, both f and g bounded.

Let co > p > g > 0, assume that M is not singular, and let S : X,, — Y,, be
defined as in no. 3. Let L,d, % be constants such that || Hy ||, <L ||y |lo
for all yeY,, and [|SQy [ <d [y, |T—Qylle <Ay [ for al
ye Y. We take for o the identity map.

(4.ii) CororLLARY. Let co >p >¢q¢>0and let c,C,D,R,,7 >0 and
r' >0 be constants such that

fllo <c,lgt,x) | <C forall te G,xeR, |x|<Ry+7+7,
lgt,x)—gt,y) | <D |x—y| for all te G, x,yeRs
lel, |y =R +7r+7,
|x—kg(t,x) | <pRy for all xeR*,|x| <Ry, teG,
Lh(c+C)<r,pd <1,kdc + kdD (r +7') < (1 —pd) R,.
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If T\ is compact, then there it at least one solution x of Ex = Nx with | x | <
<R,+7+7. Acualy, =0 if p=q ; and if p >q,7" >0, then the
problem has at least one solution x for every Xgs€ Xoz, || %02 oo < 7" .

Proof. 'The proof is the same as for the theorem, where relations (8) are
now replaced by

1% e < IHA—=Q)[f() +g(, x(@)] o = Lh(c+C) =7,
| Zoy lloo < Il (%01 — SQo4) + SQ (000, — kg (¢, xoy) + £SQ [ (t’xm‘)f—
— g (%01 + %oz + %,)] —RSQf(2)|| <0+ dpRy + kdD (v + 7') + kde <R,.

5. DIFFERENT TOPOLOGIES

In [2], [4b], [4a], [3d] we considered various situations where points of the
arguments above could be used by suitable choices of the spaces X, Y .

(a) In [2] we considered non selfadjoint problems for ordinary differen-
tial equations, say Ex —=a® + X, p () x D =f(f) +g(¢,x (), te [0,4q] =
<= R, p; of class C»~7 | with linear homogeneous boundary conditions involving
x (0), xM (a),j=0,1,...,n—1. Heref:[0,a] ~R,g:[0,a] X R—
— R are continuous bounded functions. By first taking X =Y =1,]0, 4],
we defined P and Q as the natural orthogonal projection operators onto X,=—
=ker E, Yo=ker E¥* of dimensions p,q,co>p >¢q >0, we took ¢ the
identity operator, and we defined S as in no. 3. Then we restricted X, Y to
X*=Y*=C|[0,aq], and then T, :X, X, is compact in the topology of
C since its range is contained in C»[0, 4] # >1. The corollary applies.

() In [4b] we considered non selfadjoint elliptic equations of order
2m,m >1,Ex=Nx in a number of situations. In any case, with X =Y =
=L,(G), GeR’,v>1, Pand Q could be defined as the natural orthogonal
projections of X and Y onto X,=ker E and Y,=ker E* respectively, of di-
mensions co > p > g >0, ¢ assumed to be finite. We assumed further that
S could be defined as in no. 3 with M non singular. Let Nx =71 (¢) 4 g (¢,
Dx), te G, with bounded functions f : G —- R, g : G X R* —R, g continuous,
where g depends on ¢ and on the system Dx of the u derivatives of x in G of
orders 0 < |a | <k, <m.

Assume that the linear homogeneous boundary conditions are expressed in
terms of partial derivatives of orders 0 << | o | << k,. Then we considered a space
Z,Wc Hm « Z < H* < L, (G), such that the imbedding maps j, : W —Z,
Jo 1 Z — H* are continuous, and j; is compact, and we took X*=Y*—=17Z,
Then T, as a map from X, to X, is compact since the range of T is in W, and
the theorem applies for weak solutions. We called Z the intermediate space.

23. — RENDICONTI 1984, vol. LXXVI, fasc. 6.
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For instance, for 2 (m — k,) > v, by Sobolev imbedding theorem all ele-
ments x€ H» have distributional partial derivatives Drx,0 < |« | < kg, all
bound d functions in G (and continuous in the interior of G). In this situation,
for Z = H*, or Z =W/ (G), the theorem applies with X*=Y*=7Z. As
a further particular case, for k=0, and 2m >v, all elements xe Hm (G)
are bounded functions in G. Then for X* =Y* =7 =L_ (G) the corol-
lary applies.

() In [3d] and [4a] we considered certain self-adjoint hyperbolic pro-
blems in R? with periodicity conditions reducing the problem to an interval
G in R%  We took for X =Y a suitable space of continuous functions on G,
and for P and Q different projection operators of X and Y onto X,=ker E,
Y,=ker E¥ , E=E¥*, of infinite dimension. Again we had Nx=f(¢,s) +
+g(t,s,x(t,s) with f and g bounded, and T, was not compact in C. We
then restricted X, to a subset X} of X,, X¥* convex and closed in C, made up
of Lipschitzian functions on G, and such that T, maps X} into X¥*. Now
both T, and T, are compact on X,; and X¥ respectively, and T is compact on

X; X X, -

Remark 1. For numerical examples of problems mentioned in parts (a),
(b), (c) above we refer to the same paper [2], [4b], [4a], [3d].

Remark 2. In [4b], and hence in part (b) above, it is not necessary that
E be elliptic. All that is needed is that decompositions X =X, + X,, Y =
=Y, + Y, occur with projection operators P, Q so that PX —=X,=ker E,
QY =Y,=ker E* co >p > ¢ >0, ¢ finite, with p =dim X, ¢=dim Y,,
and a subspace X, of X, of dimension ¢, maps ¢ and S as in no. 3, and H so
as (k;55) hold. Examples of this situation will be exhibited elsewhere.

Remark 3. For self adjoint elliptic problems of order 2m, say

(Ex)()=f(t) +g(x(®), teG, xeH,

with E elliptic and self adjoint, and ker E =ker E*=sp (¢,,...,¢,), g
R —R, g continuous, with finite limits g (4 oo) and g (— co), and for every
element w e ker E, let G+, G- denote the subsets of G where w > 0 and w <0
respectively. Then Landesman and Lazer [8] proved that the relation

"fwdt—]-g(—l— co) J !w|dt—g(—oo)f|w]dt>0 (or < 0)
G G+ G-

for every we kerE, w0,

is a sufficient condition for Ex = f 4 g (x) to have a solution xe H". 'Their
proof for m =1 was extended by Williams [11b] to any m, and was motivated
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by the alternative method. While we referred to a great many extensions in [le],
we only mention here that Shaw [10] extended the statement above to non-
selfadjoint elliptic problems under the restriction that ker E=sp (¢;, ..., d,)
and ker E*=sp (v ,..., w,) have the same dimension and that the bases
can be chosen in such a way that every element w —X; ¢; ¢; and corresponding
element w = X ¢; w; share the same regions of positivity and negativity in G,
that is, w (f) 0 (£) >0 in G.

We also mention in connection with the Landesman-Lazer theorem
that, if the values of g (x) lie in the interval [g (— o0), g (+ o0)], then the
condition above with > replacing > is a necessary condition for the problem
Ex =f + g (x) to have a solution.



