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Meccanica dei solidi. — On the dynamical behaviour of plates in 

unilateral contact with an elastic foundation: a finite element approach. 

N o t a di L U I G I A S C I O N E , D O M E N I C O B R U N O e R E N A T O S. O L I V I T O , 

presentata W dal Corr isp. E . G IANGRECO. 

RIASSUNTO. — In questo lavoro viene studiato il comportamento dinamico di una 
piastra vincolata monolateralmente su una fondazione elastica alla Winkler. Si presen­
tano alcuni risultati numerici ottenuti mediante discretizzazione agli elementi finiti. Tali 
risultati mettono in luce l'influenza di alcuni fattori tipici come le funzioni di forma, il 
parametro di mesh e l'ampiezza dell'intervallo con cui si realizza l'integrazione nel tempo 
delle equazioni del moto. 

Si istituiscono infine dei confronti con risultati numerici ottenuti precedentemente 
da altri autori. 

1. INTRODUCTION 

The unilateral contact problems are a subject of great interest both in theo­
retical and applied mechanics. 

In recent years much research has been done in this context. 
Mainly, the static contact problems have been investigated and significant 

results, from a theoretical and a numerical point of view, can be found in lite­
rature [1-2-3-4-5]. 

In this framework the contact problems involving beams or plates resting 
on tensionless elastic foundations represent a subject of relevant structural in­
terest. More specifically, the static unbonded contact on a Winkler subgrade 
has been analyzed in [6-7-8-9-10], while results relative to the elastic half-
space model can be found in [11-12-13]. 

On the contrary, only a few numerical investigations have been developed 
in the dynamical field [14-15-16]. 

Some mathematical aspects of the problem are examined in the basic works 
[2-3]. 

The aim of the present paper is a numerical analysis relative to the dyna­
mical problem of an elastic plate in unilateral contact with a Winkler subgrade. 

The plate is modelled according to Mindlin's theory. In this way the 
effects of the shear stresses and of the rotatory inertia on the motion can 

(*) Nella seduta dell 'I! febbraio 1984. 
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be taken into account. Further on, this model facilitates the use of (^-ele­
ments [7]. 

A variational formulation of the problem is presented and a theorem of 
existence and uniqueness of the dynamical solution is given. 

Some numerical results, obtained by using a finite-element discretization 
are discussed. The time integration of the non linear motion equations is 
achieved via Newmark's method. 

An evaluation of the influence of some factors such as the interpolation 
functions, the mesh parametei and the time stepsize is possible through these 
results. 

Finally, a comparison with some previous results by D. Talaslidis and P.D. 
Panagiotopoulos [18] is presented. 

2. FORMULATION OF THE PROBLEM 

In this section a variational formulation of the dynamical problem of a 
rectangular plate resting on a tensionless and frictionless elastic foundation 
(fig. 1) is given. 

Ptx.y.t l 

Fig. 1. 

This formulation falls within the class of problems examined in [2-3], for 
which results of existence and uniqueness of the solution have been proven. 

2.1. The plate and elastic foundation models. 

According to Mindlin's theory [19], the displacement field components 
of the plate can be expressed by the following: 

(2.1a) u1=^—z^x(xiy,t)1 

(2.1b) a 2 = — s iM*»^»*)» 

(2.1c) w 3 = w(x,y,t), 

where tyx and tyy are the bending slopes along the x and y axes. 
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Eqs. (2.1) differ from the corresponding ones in the classical thin plate 
theory in that functions ^i yet to be determined replace wyi in % and u2. 
Therefore, it is assumed that line elements originally normal to the midplane 
remain straight on the deformation (no warping), but the assumption that such 
line elements remain normal to the midplane, after deformation, is abandoned. 

The strain components for the assumed displacement field follow imme­
diately as: 

zxx — zYz,x > ZVV= Zry,y > zzz = 0 > 

(2.2) z 1 1 
*xy = — y Oklf + <W> Z™ =*-2 (*>>z— Ì>z)> Zyz =* y («>,„ — +„) • 

Assuming that the normal stress azz can be neglected with respect to the 
other ones, it is possible to express the stress components from eqs. (2.2) by 
means of Hooke's law: 

E E 
<*zz = 1 T few + VZyy) > °yy =* ~* 2 (ïyy + ™xx) > °zz 9Ë 0 , 

(2.3) 1 _ ~ v 1 — v 

^«2Ge^, GXZ=;2GZXZ> a y z — 2 G eya. 

In eqs. (2.3) E and G are the plate elastic moduli, while v is the Poisson's ratio. 
As far as the elastic foundation is concerned, it is assumed that it consists 

of a continuous distribution of massless elastic springs, which cannot react in 
tension. Where the contact is active, the spring reaction r is proportional to 
the plate deflection w, according to Winkler's assumption, i.e.: 

(2.4) r=*—Kfu>+-

where Kf is a positive constant (Winkler modulus) and w+ is the positive part 

of w (w+ — max {w , 0}). 

2.2. Variational formulation. 

The plate dynamical equilibrium equations can be expressed by means of 
the virtual work principle : 

+ H/2 

J J J ai§ S £ i i dQ dz =. I I p §w dO — J J Kf w+ $w dQ — 

a - H/2 Q Q 

(2.5) 
+ H/2 

' ì l i ?Ui %Ui { ; dOds 

Q-H/2 
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where p is the material density, the dot represents the time derivation and S u{ 

are the virtual displacement field components. 
From eqs. (2.2) and (2.3), eq. (2.5) can be rewritten in the following form: 

(2.6) D j j [ ^ *«k>s + ^ % „ + v (<k>ie %_, + ^ %, ) ] dû + 
Q 

+ ^ l I [(K, + M ( S ^ + %,,)]ciO+xGH| \[(w,-^x)(8w,x-^) + 

a a 

+ K - +„) (*«>,,— S )̂] dQ = f [ /> Sw dû — f [ K, w+ Sw dû + 
fi Q 

- | / ( - Ç - 4 s ^ + - ^ ^ % + pHèi,SW)dû 

where D is the plate flexural stiffness and x *s the shear correction factor. 
The closed subspace of (H1(Q))3 which consists of the plate admissible 

displacements (w , tyx, '<\>y) is denoted by V0(H1(Q) is the usual Sobolev space 
of order one on the open region D). Evidently, if no rigid support exists, V0 

coincides with the whole space (H1 (£&))3. 

Furthermore, let the following be: 

3F — (L2 ( Q))3 (L2 ( O) is the space of square summable functions on Q), 

VQ the dual space of V0, 

X a generic Banach space with norm || • || x , 

Lp (0 , T , X) the Banach space of the mesurable functions te [0 , T] -> 
->/(*) e X, such that: 

T 

(2.7) ( j | | / (0 || & d*y<*> =, | | / | | L V T,.,X) < oo (p < oo). 
0 

(2.8) I I / I IL~(O,T ;X) = s u p ess | | / (0 || x -
t e [ 0 . T ] 

The following theorem holds: 

THEOREM. It is assumed that: 

(2.9) p,peL*(0,T;V'o), 

(2.10) (w0, ̂ 0 , ^ ) e V0 , K , ̂  , <lv) e Jf. 
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There exists a unique element (w ,tyx.,tyy)e V0 such that: 

(2.11a) ( w , k , < | ; , ) 6 L ~ ( 0 , T ; V 0 ) , 

(2.11a) (w,i>x,i,y)eL°°(0,T;jr), 

(2-lla) (w ,< i< ; ,< j ; , )6L~(0 ,T ;Vi ) , 

and satisfying eq. (2.6) with the initial conditions : 

(2.12a) w(xyy ,0)^wo(x,y), ^ (x , y , 0) *= ^ 0 (* , j ) , 

M*') ' ' 0 ) 4 3 3 <M*>jO> 
(2.12b) w (* , y , 0) = wx (x , y), tyx (* , 3;, 0) = ^ (a? , y), 

For proof of the above theorem reference to [2] is made. 

3. NUMERICAL TREATMENT OF THE VARIATIONAL PROBLEM 

The region O is discretized by means of a family of rectangular finite ele-

N — e — 

ments {Qe}el1 ( D ^ = U Oe > &e H ^ / = 0 if e ^f) and let / i (*,>>) be the 

global interpolation functions. In this way, for each t > 0, a subspace VQ of V0 

(A is the usual mesh parameter) is identified: it is spanned by the system of 

the N G linearly independent functions {(fiyfi , / i ) } _ ^ , that is supposed complete 
in V0 (four and eight node isoparametric rectangular elements will be considered). 

An approximate solution of the problem (2.6) can be taken as: 

N G 

(3.1a) wh (x , y , t) = 2 wi ( 0 / i (*• > y) > 
1 = 1 

N G 

i = \ 

N G 

(3-ic) *hy(*,y,t)*='ZMt)fi{*,y), 
i = 1 

where 2*^, ^ , ^ i are the nodal values of the functions wh , ̂  , ̂  . 

Consequently, taking into account eqs. (3.1), the motion equation (2.6) can 
be put in the following discrete form: 

(3.2) Mii + K(u)u=p, 
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where M and K (u) are respectively the mass and stiffness matrices of the dy­
namical system, p and u are respectively the vectors of the generalized loads and 
displacements. Obviously, the stiffness matrix K (u) is a nonlinear function 
of u because of the second term on the right hand of the eq. (2.6). 

By simple algebra the following is obtained: 

(3.3) 

(3.4) M = 

where: 

P = [Pii- j j pfid o l , 

M(a>) 

M Cr ) 

M ( T ) 
K = 

' J£(ro,w) j£(w,*) J£(w,:v) ' 

sym K ( y ' } ) 

p H / ^ d O (3.5a) 

(3.5b) MW jj^Mdn 

(3.6a) K ^ ^ D ^ J / ^ / ^ d Q + ^ J J / ^ / ^ d Q ] +XGH j jftf,àQ 
a o a 

(3.6b) K^>=D[|J/M/,>!,dO + i = ^ jjfi^âùj + xGHJjfJ, dQ 

(3.6c) 
K ^ , v ) = D 

(3.6d) 

(3.6e) 

(3.7a) 

(3.7b) 

(3.7c) 

KJ^^-xGRJjf^da 
n 

Kr y )=-xGHjj ' /^ / ida 

TT(W,W) xr(w,w) j TT(W,W) 

ij ij ' ij 

Kg..-) = x GH[JJ* fi,.fj,mdn+jjfii1,fiiV da] 

K^.W) = 2 L K / Pr< /< ("ye > JV) /> (*r« > y ye) 
e— 1 y e = l 
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In the last equation the sum is extended to all Ne finite elements and Ge 

gaussian points of coordinates (xre, yye) on the e-ih element. The coefficients 
PYe are defined as: 

WYe (Gaussian weight at the point (xye, yye) 
N G 

(3.8) P e = { if .2 Wi & (*" > y^ ~ °) 

0 (if J WifiiXye^ye) < ° ) 

Eq. (3.2) can be solved, for each time t, by means of the following iterative 
procedure: 

(3.9) M#<*> + K (u <k~^) u&) =p , 

i.e. at the k—th step eq. (3.9) is solved by evaluating the matrix K^»*^ from 
eqs. (3.8) for u^==w(Â~1) : the first step corresponds to the bilateral contact 
problem. 

4. NUMERICAL APPLICATIONS AND CONCLUDING REMARKS 

In this last section some numerical results regarding the dynamical equili­
brium problem of a rectangular plate subject to the loads shown in fig. 2 and 
to zero initial conditions are presented. 

Rt) FCtH 

Fo 

a> b> 

F(t)i 

Fo 

, » » 
\<PÏ0 

O 

Fig. 2. - Load conditions. 
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The time integration is carried out by means of the classical Newmark's 
method with S = 0.5 and a = 0.25 [20]. 

The presence of the unilateral constraints does not permit the formulation 
of a classical eigenvalue problem and consequently the time integration can 
be only carried out by means of direct methods. 

In order to deal with dimensionless quantities the following is assumed: 

(4.1a) 

(4.1b) 

(4.1c) 

S = tf/L, i r)=j/[ j .L, 

• — t jt0 , t0 — L2 I —— 1 , 

D ! D I 
95 = Ï^I>' * ~ F à L * " 

D 

F 0 L 2 w, 

By substituting eqs. (4.1) into eq. (2.6), it is easy to show that, for an assign­
ed load condition, the dynamical solution depends only on the four parameters 
which follow: 

(4.2) A = 
H 

L * . 

EXAMPLE 1. The classical problem of a beam resting on an elastic foun­
dation is analyzed. The load condition consists in a suddenly applied load 
acting at the middle section (fig. 2a). 

* - 2.5*10 

-4 -

-2 -

2-

4-

6-

8-

10-

12-
} 

/-ir-2.5' <10< 

/ N, /~<w-f=1.5x10"2 

/TlÀ-Z 0.4 V - / 0 . 6 ^ ^ 0 . 8 \.0 t 

1 l/l \ \ -2 
/ v \ ^-1^=0.75x10 

/ / \-tr=0.25x10"2 

4TT=0.05*1Ó 2 

/ 11x40 4-node elements 

f Vx104 

J 

Fig. 3 a. Fig. 3 b 
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The parameters used are: 

(4.3) ^ = 0.05, A = 0.05, r * = » l , v = 0.1 

Figs. Za-b-c show some numerical results for the dimensionless transverse 
deflection v along the beam axis; in particular they correspond to uniform meshes 
of ( l x ) 20, 40, 60 four node rectangular elements (due to the symmetry of the 
scheme, only one-half of the beam has been discretized) and to some fixed values 
of the dimensionless time parameter T. The time stepsize used in the New-
mark's scheme is AT = 0.05 X 10~2. 

«-2.5*10 

if V*10 

10-

7 Vx10 

ir = 2.5*10 

Fig. 3 c. 

11^20 8-node e lements! 

Fig. 3d. 

On the contrary, the numerical results corresponding to a uniform mesh 
of (1 x ) 20 eight-node rectangular elements are shown in fig. 3 d. 

The influence of the time stepsize is analyzed in figs. 4 a-h, where the sec­
tions £ — 0 and £ = 0.15 are examined. The sections correspond to the two 
different situations: 

i) continuous contact with the subgrade, 

ii) transition from active to inactive states of the unilateral springs. 

For each time step, the iterative scheme proposed in Sec. 3 to solve the 
non linear dynamical equilibrium equations converges in a few steps (only 
4 ^ 6 steps). 

7. — RENDICONTI 1984, vol. LXXVI, fase. 2. 
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EXAMPLE 2. This example refers to the previously examined beam, which 
is now subject to the load conditions shown in figs. 2 b-c (cp J = 0.1 , T0/£0 — 2.5), 
consisting in a linearly increasing force and in a pulsating one respectively, 
acting at the middle section. 

The discretization is achieved by means of a uniform mesh of (1 x) 40 
four-node rectangular elements (on one-half of the beam). 

The time stepsize used in Newmark's scheme is the same as in the previous 
example. 

f V*10 I V*10 

Fig. 4 a. Fig. 4 b. 

t load condition b I /-•*- 2.5*10 

-r=1.5*10~2 

- 6 -

-4 -

-2 -

2-

4-

6-

8-

10-

12-

|load condition ci 

/ M / Q 2 0.4 \ _ 

/ / / \ \ - t r = 0.75x102 

jj I \-ir=0.25x10"2 

^-TT = 2.5X1Ó2 

V / ^ T = 1 . 5 * 1 0 ~ 2 

/0.6 Vl /0 .8 

UT=0.05*10~ 2 | 

/ | 1 x 40 4-node elementsl 

' Vx104 

^ 1 

Fig. 5 a. Fig. 5 6. 
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EXAMPLE 3. A two-dimensional problem corresponding to a square plate 
subjected a suddenly applied, force at the centre is now examined. The pa­
rameters used are as follows: 

(4.4) ( X - l A — 0 . 0 5 , r = i •0.1 

Due to the biaxial symmetry of the scheme only one-quarter of the plate 
as been discretized. 

Figs. 6 a-b show some numerical results obtained by using different meshes 
of four and eight node rectangular elements: the dimensionless transverse de­
flections v along the £ axis is plotted against the dimensionless abscissa \ for 
some fixed values of the parameter T. The time stepsize used in the Newmark's 
scheme is AT = 0.05 X 10~2. 

^ = 2.5*10 

HVxlO H V*1© 

Fig. 6 a. 

[KMQ 4-noae elements! 

Fig. 6 b. 

EXAMPLE 4. This last example has been analyzed in a recent paper by 
Talaslidis and Panagiotopoulos [18] (fig. 7). 

The suddenly applied forces act upon the edges and the centre of the plate. 
Furthermore, a linearly increasing force P is applied at the node E. The plate 
analyzed in [18] corresponds to KirchhofFs model and the finite element discre­
tization for one-quarter of it utilizes 308 and 64 degrees-of-freedom and con­
straints, respectively. 

Since in this case the rigid body motions are avoided by the simple sup­
port, a reduced integration of the shear terms in eq. (2.6) has been carried out 
[21, 22]: a full integration gives, indeed, completely erroneous results. 

On the contrary, the numerical results obtained in the previous examples 
(for which the rigid body motions can occur) correspond to a full integration 
of these terms. 
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a -1.0 m b - 8.0 m 

E- 4»105 KN|m2 

V- 0.16 Q- 2.5 K N se c2/m4 

H = 0.05 m 

k-3-104KN|m3 

P(KN) 

100 

simply support 

free edge 

Fig. 7. 

vertical displacement at fx-y-1.0 rr 

^VflO-m) 

Fig. 8. 



L . ASCIONE E ALTRI, On the dynamical behaviour of plates, ecc. 105 

Finally, a comparison between the numerical results given in [18] and the 
present ones, corresponding to a finite element mesh of 15 X 15 four-node 
rectangular elements, is presented in fig. 8. 

A good qualitative agreement between results is noted, although the nu­
merical values are quite different. In this respect, it is observed that under 
the same conditions Mindlin's model is more flexible than KirchhofPs ; con­
sequently, the relative stiffness plate-foundation decreases and this agrees with 
the smallest value of the maximum displacement exhibited in our analysis at 
the node E. 
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