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Fisica matematica. — On the Cauchy problem in linear visco­
elasticity W. Nota di P a s q u a le  R e n n o , presentata <**> dal Socio 
D . G r a f f i .

R iassunto. — Con riferimento all’operatore integrodifferenziale della viscoela- 
sticità lineare nella formulazione creepy si determina la soluzione fondamentale E in cor­
rispondenza di un’arbitraria funzione di memoria. Di conseguenza viene risolto espli­
citamente il problema di Cauchy relativo al moto unidimensionale di un sistema visco- 
elastico 08, omogeneo ed isotropo, determinato da dati iniziali e storia di stress comun­
que prefissati. Successivamente, nell’ambito di opportune ipotesi di memoria labile, si 
dimostrano alcune proprietà di E che consentono rigorose approssimazioni del moto di 
08 in un intervallo finito di tempo.

0. Let 08 be an isotropic, intrinsically homogeneous body with a linearly 
viscoelastic behaviour of creep type and let u denote the displacement from an 
undeformed homogeneous reference configuration 0%. According to the trans­
lation invariant axiom, the well known creep representation of the linear one­
dimensional motions of 08 is given by

(0.1) Lm =  c2 uxx — % — ttTT (x , t) dr =  — /  ,
0

where u(x  , t) is the single non-vanishing displacement component and f  repre­
sents a source term depending on the body forces and on the prescribed past 
history of stress. Further, the response function £ (t) denotes the ratio J (t)/] (0), 
where J (t) is the creep compliance (Sect. 1).

As it is well known, numerous and various problems related to (0.1) and 
to the corresponding relaxation representation have been the subject of several 
and interesting researches (e.g. [3, . . . , 8] and [12]). So, as for the Cauchy 
problem, J. Barberan and I. Herrera in [5, 6] have established the existence 
and the uniqueness of the solution also for inhomogeneous media. As for the 
signalling problem, D. Graffi [3] and M. Fabrizio [7] have constructed the ex­
plicit solution by means of series of transcendental functions. Further, the case

(*) Lavoro eseguito nell’ambito dei fondi del M.P.I. (quota 40%) per la ricerca 
su « Problemi di evoluzione nei solidi e nei fluidi ».

(**) Nella seduta del 26 novembre 1983.

13. — RENDICONTI 1983, vol. LXXV fase. 5.
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of a rod of finite length with both ends fixed has been considered in [8] by 
C. Dafermos, who has investigated the asymptotic stability of solutions of an 
abstract integrodifferential equation in the framework of the theory of dyna­
mical systems. The solution is asymptotically stable when g (t), besides ap­
propriate hypotheses of fading memory, verifies also a convexity assumption. 
This problem of the viscoelastic rod has been analyzed also in [12] by D. Graffi 
who has proved that when g (t) is approximated by a Prony series, the eigeno- 
scillations of 3S result by a combination of a damped oscillation and aperiodic 
motions.

The special case of a standard linear solid has been widely discussed. 
In [16], when x e  Rw (/z =  1 , 2 , 3 ) ,  the explicit fundamental solution related 
to whatever the number « = 1 , 2 , 3  of space dimensions may be, has been 
constructed. Moreover various basic aspects of the wave behaviour such as 
diffusion, singular perturbation problems and asymptotic properties have been 
evaluated. Further, maximum principles necessary to solve iox& s also unilateral 
problems [15] have been established.

In this paper—in order to extend to the case of @ the analysis stated in 
[16] for —the fundamental solution < E  , x >  (x Gê  (R2)) the operator L
at first is constructed (Sect. 2). Consequently, the explicit solution of the 
Cauchy problem in all of the space and with quite arbitrary data is achieved 
(Sect. 3).

Successively, some properties of <  E , / >  connected with meaningful 
and usual hypotheses of fading memory for g (t) are investigated (Sect. 4). So. 
when g (t) >  0 , g (t) <  0 on R+, the fundamental solution of L is a tempered 
distribution associated with a never negative function E (x > t) which can be estimat­
ed in terms of the well known fundamental solution Jf7 [g0] related to the case 
g (t) ~  const. — £0 >  0:

(0.2) X  [ft] =  (2e)-* e-W* I0 (J ft  ,

where r — | x | /c, rj (t) is the Heaviside function and I0 is the modified Bessel 
function of the first kind.

In fact, if T denotes the support of E that is the forward characteristic 
cone related to L, the following theorem holds.

T heorem 0.1. When g (t) is a strictly positive C2 (R +) function with g{ t )  <  0 
on R+, the fundamental solution of the operator L is a tempered distribution of order

o
zero induced by a never negative C2 (T) function E. Moreover, everywhere in
o
T, E satisfies the estimates

(0.3) 0 <  -3T [g (0)] <  E <  [g (0)] k (t2 — r2) 9C [  ̂ (£)] ,

where ^  [•] is defined in (0.2), k =  sup [— g (£)] and the equality holds iff r ~ t .



Pasquale Renno, On the Cauchy problem in linear viscoelasticity 197

So, on every bounded initial time interval [0 , T], the behaviour of 88 can 
be rigorously compared with that of the media 880 and 88T characterized by the 
constant memories g (0) and g (T). In fact, by (0.3) one has

as ̂  is a decreasing function of g. Further, for any arbitrary finite t , the ine­
quality (0.3) permits us to estimate the solution u of the initial value problem 
related to (0.1) in terms of the data. Obviously, when t is large, the problem 
of the asymptotic behaviour must be investigated. But, as Dafermos has proved 
even when x e  [0 ,1 ] , more restrictive conditions on g{ t )  and the da a must 
be requested. This analysis, together with applications of (0.3), will be dealt 
with successively.

1. In the framework of the onedimensional linear theory of elasticity 
let u (x , t), a (x , t), e (x , t) be the single nonvanishing components of the 
displacement field, the stress tensor and the strain tensor respectively. Further, 
let f ( x  , t) be a volume density of prescribed forces and let p denote the constant 
mass density in the homogeneous reference configuration 88. When one assumes 
for 88 an elastic heredity of creep type, the onedimensional motions of 88 are 
described by the well known equations.

wheire J (0) is the initial value of the creep compliance J (t) and g (t) =  j  (£)/J (0). 
By (1.1)-(1.2) obviously one deduces (0.1) with £2= [p J  (0)]-1 and

(0.4) X  [g (0)] <  E <  (1 +  *T*)ar [g (T)]

( l . l ) putt =  Gx + f  , e =  ux

( 1.2)

—  oo

(1.3)
0

where

0
(1.4)

--OO

Of course, according to Volterra, it is assumed that the past history of 
a (# , t) is prescribed on R X (— oo , 0] and is such that the integral in (1.4)
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is meaningful and the derivation under the integral sign with respect to the 
variable space is feasible.

Then, referring to the half-space

(1.5) Y » = { ( * ,* )  : x g  R , t >  0} ,

the classic initial-value problem & related to (0.1) can be given the form

(1.6) L« =  — / ( x , t ) e Y l

(1.7) 3/ u (x , 0+) = / j  (*) (* =  0 , 1 )

As for the response function £ (t), we will assume thatg is of the class C2 (R+) 
and is compatible with the fading memory axiom [2 ,1 0  , . . .  13]. The special 
case of Th. 0.1 will be considered in Sect. 4.

2. Within the limits of an heuristic research of the solution of the Cauchy 
problem we apply to (1.6)-(1.7) the Fourier operator with respect to and 
he Laplace operator J? with respect to t. Let s be the parameter of the ££t 

transformation and let

(2.1) i  ( x , s )  = s e t v { x , t )  , Vi (x) ■ v % (x) =  J Vi (I) v2 (x — I) d i  .
R

Then, by means of standard computations, by (1.6)-(1.7) it follows

(2.2) u (x , s) — Ê (x , s) • [ f G +  (1 +  g CO) (s/o +  A  +  P”1 / ) ]  > 

where E is the ^-transform formally defined by the symbolic relation

(2.3) Ê (* , *) =  \2cs y 1 +  g (s) j-1 exp s p  +  g (*)] •

Obviously, when E = ^ ? - iÊ  is known, the inverse transform of the other 
term (1 + ^ ) E  which appears in (2.2) is given by

(2.4) E1( x , 0  =  ̂ - 1 [ ( l + i ) Ê ]  =  E + <?. E  ,

where # denotes the convolution on t
The inverson of ̂ -transforms such as (2.3) has been achieved already by 

by Graffi in [3] and Fabrizio in [7]. But some properties of E, which we will 
state in Section 4, do not appear easily deducible by these results.

For this we are going to establish a new inversion formula of (2.3).
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Let us consider the Laplace integral ([14] p. 200)

.-------
P ______________ g-bl/fZ-a* è >  0

(2.5) r ?“ 10 (<a fît2 — è2) du —   —
J __ Re (̂ >) >  i Re (a)

and let

b =  r =  c~1 \x\ , p  =  s (1 +  g /2) , a =  sg/2 .

Then one has

(2.6) Ê (* , s) =  (2e)-1 J e-d+î/2)*« I0 [(1) ^  y«* _  r2] dw .

Further, being

(2.7) I0(z,) =  J_ f^os9 db
TT J

0
by (2.6)-(2.7) it follows

TU OO

(2.8) Ê (x , s) =  (2 7̂t)“1 j' do J e-su-zsg
O r

with z  =  2-1 (u — cos 0 ]/ u2, — r2).
If one puts

*(*)■= — Ì  00 > £ (0) =  £o , h (s) = ^ [ — g ( t ) ] =  - S g  + g 0

the formula (2.8) becomes
TU OO

(2.9) Ê (x , s) =  (2tû )~1 [ dO J  ~zgo +^0) .
O r

Now, formally one has

oo z n
(2.10) ^6) =  1 +  ^  Of [GB (i)]

n = 1

where

Gi(*) = —£ , G„(*) = —^ * G n_1(2.11) (re >  2 ).
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Further, it results

r r e~r̂ i2 + «V
(2.12) (2 7t c)-1 d6 e~m ~r du =  = £ e œ  [g (0)]

{ J Is* + g 0s

where is the function defined by (0.2). Consequently, by (2.9)-(2.11)-(2.12) 
easily it follows that

(2.13) E {x , t) =  (2 c)-1 y)(t  — | * |  I c) F ( I * j / c , t)

where F (r , t) is

TC t
____    CO f* /» gfl

(2.14) F (r , t ) =  er̂ tfl2 I0 ( | g 0 p 2— r2) +  tit1 | d6 tr9#  —  Gn(t — u) du .
r/= 1 J J lì-n= l *)

0 r

At last, by (2.4) one has

with

(2.15)

Ei ( x , t )  =  (2 c)~x 7) (t — I * I / c) Fj ( I * I j c , t)

Fx (r , t) =  F (r , t) +  J g (t — t )  F (r , t )  dx .

3. In order to prove rigorously that the symbolic relations now applied 
allow us to solve explicitly the Cauchy problem now we will demonstrate 
the following theorem. If T =  {(# , t) : t >  0 , | x | <  ci) is the forward cha­
racteristic cone, one has:

T heorem 3.1. Let g (t) and g (t) be bounded functions on R+. Then 
the kernel F given by (2.14) is a C2 (T) function which defines a regular solution 
of (0.1) with f  =  0. Furthermore, the Laplace integralSFt r\ (t — r) F (r , t) con­
verges absolutely in the half-plane Re (s) >  0 and one has

3.1) £ ?rì ( t ~ \ x \ l c ) F ( \ x \ l c , t )  =  2 c È ( x ì s)

with Ê defined by (2.3).
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Proof. It is

t t— rJ e~goz zn G n (t — u) du =  J e~g$  y n G n (u) du .
r 0

with y  =  [t — u — cos 0 V (t — u)2, — r2j and r =  | x | / c. So the first and

the second order derivatives with respect to a: and t involve only G n and Gn. 
Now, as \g (u) \ < M  for all u >  0, by (2.11) it is

(3.2) I Gn (u) I <  Mn if1-1/  (w — 1) ! n >  1

hence

2  —  i g b («)-i <  y
“ n

, (My)n+1un 
o n\ (n +1)! -ŸMy

I, (2 yMjw) .

Thus, for all t <  T (T  >  0 but arbitrary), the series is uniformly con. 
vergent. As also g is bounded, for G n inequalities such as (3.2) hold too- 
Consequently F is a C2 (T) function such that

I F I <  e—gofl2 I} (^go^t2 — r2) +  7Z-1 f d0 | e~g& | /  Ix (2 ]/Myu) du
j  j  u
0 0

and ithis implies, by means of the Fubini-Tonelli theorem, that the Laplace 
integral 7] (t — r) F (r , t) converges absolutely for (s) >  0. Then, for­
mula (3.1) is an easy consequence of the computations stated in Sect. 2. These 
properties of F enable us to make rigorous the formal procedure so far employed, 
proving so that F is a classic solution in T of (0.1) (with /  =  0).

The construction of the fundamental solution achieves, as it is well known, 
the explicit solution of the Cauchy problem with arbitrary data. If one puts

x-\-ct

(3.3) %i =  ( 2 c)“1 j  f i ( y ) Fi ( \ y  — x \ I c , t ) d y  (* =  0 , 1 )
X— Ct

(3.4)

t  X  "j- CT

uj  =  (2 c)-1 J dr J f  ( y , t  — t )  F ( I y  — x I / c , t )  dy
0  X ------CT
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one has:

T heorem 3.2. If  the initial data f { (i =  0 , 1) are C2~̂  (R) and the source 
therm f  is C1 (Y2, ), then the initial value problem (1.6W1.7) admits the unique 
C2(YX) solution

(3.5) u =  dt ufo + u fi + u f  .

Proof. As for the heuristic determination of formula (3.5) we refer to 
uhe symbolic relation (2.2) observing that, owing to v) (t — | x | jc), the convo­
lutions with respect to x are given by (3.3)-(3.4). Further, when t =  \ x \ jc 
it is

(3.6) F ( t , t) =  E1 ( t , t) =  e~go*/2 

and easily one can see that

sÊ (x , t) • f 0 (x) — dt tif .

Now, in order to prove that u is a C2(Y2|_) solution of it suffices to 
observe that, on the basis of the properties of the kernel F (see Th. 3.1) and the 
hypotheses on the data, u satisfies everywhere in Y 2+ the equation (0.1) and the 
nitial conditions (1.7). The uniqueness is a consequence of well known theo­
rems of Barberan and Herrera [5].

4. The behaviour of the kernel F depends clearly on the properties of the 
creep compliance J and therefore of the response function g (t). A first re­
sult refers to the hypothesis of Theorem 0.1, i.e. g (t) >  0 with g (t) <  0 on 
R+. As is well known, this case is meaningful from a physical point of view 
for the following reasons.

The function g (t) is the conjugate of the memory function  ̂ (0 related to 
the relaxation representation

(4.1)

where  ̂(t) — G (f)jG (0) and G (£) is the relaxation modulus. Now, well 
known inversion theorems for strong response functions [ 1 , 4 , 1 0 , 1 3 ]  gene­
rally impose precise connections between the properties of  ̂ and g. Thus, 
for example, is possible to prove by means of the energy dissipation [12, 13] 
that when |  ̂ | is a monotone decreasing function on R+ vanishing as t ~+oo , 
then  ̂ must be necessarily negative. This fact implies, according to a Theo 
rem of Volterra, that the conjugate kernel g (t) is positive. Moreover Volterra 
has also proved the existence of conjugate hereditary coefficients both decreas­
ing in absolute value and vanishing when t —> co (see [1], pp. 190-194)



Pasquale Renno , On the Cauchy problem in linear viscoelasticity 203

Proof of Theorem 0.1. In (2.14) let F =  A' +  A" be with 

(4.2) A — e~gQfl% I0 Q;go ]/ t2 — r2) >  0

7Z t

r r °° z n 
(4.3 A" =  F — A '=  7^  de «-V £  — Gn(t — u)du.

J J yi = 1 fl •
O r

Now, the hypothesis implies that for all I >  0 it is Gi =  — g  >  0 , G rt — 
— — g # >  0 (n >  2) and so A" >  0 , the equality holding iff r =  t .
Further, if k =  sup (— ̂ ) , one easily has

(4.4) G, <  k , G„ <  k [g (0) -  g ( t) ] -1 (n >  1)

and consequently by (4.3)

(4.5) 0 <  A" <  kn-'
r r ■ e~zg(0)

g(Q)— g ( t  — u)
d u ,

where the function under the integral sign is clearly summable.
A more crude, but more explicit inequality can be deduced by (4.5) 

observing that 1 — e~y <  y  (y >  0) and that g (t — u) >  g (t) . So

7T £

(4.6) A" <  Â7T-1 J d0
0  V

But, what eve the parameter a may be, one has

f z e -zg(t) dz/ .

o
^  #d0 =  — da [e~ auI2 I0 (1 acù)] =  a-1 [̂ —aw/2 0)Ji (1 ĉo)]

with co—f  u 2 — r 2 So by (4.6), being a — g { t ) and Ii (^) <  ^I0 (^) ? one
deduces

A" <  kg-1 [e~ugWl2 colj (J <zoù)]“= * <  ke~tg®l2 (t2 — r2) I [ |g  (£) y t2 —r2]

hence (0.3) follows. At last, as I0 (z) <  e'zI , by (0.3) one deduces that 0 <  F <  
< 1  +  kt2 proving so that E induces a positive temperate distribution of order 
zero. So, the proof is complete.
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Remark 4.1. As an example, observe that when âS reduces itself to the 
standard solid the sum of series in (4.3) is known. In fact, being g (t) =  
=  go e~&t {go >  0 . p >  0) , one has

fn—1
G« (t) =  g” p- er# (n (n >  1)

and so

(4.7) %  G n ( t - U )  =  1 I, [2 y £0 V* (t -  u)] .
r*~! til \ t ---- U /

Other applications will be discussed successively.
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