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Topologia. — Some properties of perfect metric spaces. Nota di
ANGELO BELLA e Biacro Ricceri, presentata () dal Socio G. Scorza
DraGoONI.

RiassunTto. — In questa Nota, datiuno spazio metrico perfetto X ed un suo sottoin]
sieme K chiuso e raro, si dimostra l'esistenza di una funzione continua f : X — [0, 1-
tale che int(f~1(¢)) = o per ogni te[0,1],f(x)=—0 per ogni xecK e f(y)==1per
qualche y ¢ X\ K. In particolare, cid® permette di dare risposta simultaneamente a
due questioni poste in [2]. Si mettono in evidenza, poi, ulteriori conseguenze di tale ri-
sultato.

The aim of this Note is to prove Theorem 1 below and to point out some
of its consequences.

THEOREM 1. Let X be a perfect metric space and K a closed and vare sub-
set of X. Then, there exists a continuous function f:X — [0, 1] such that :
(1) int(f2(t) =02 for every te[0,1]; |
2) f(x)=0  for every xe€ K;
3) {0, 1} < f(X).

Proof. Let & be a s-discrete base of X, so that #=1)%,, where each

neN
A, i a discrete family of open subsets of X (see [1], p. 127). We now construct
a sequence {D,} of subsets of X and a sequence {f,} of real functions on X,
having, for every ne N, the following properties:

n—1
(1), the set D, is discrete and, if z >2,D, N <U Di> =

g=1

(2), for every Bme £, the set D,, N (B™ \ K) has exactly two distinct points
Xgm) s Vgln) 5
(3)n the function f, is continuous, f,, (X) < [0, 1], f, (x) =0 for every x€ K,
f,, (*gw)=1 and f, (yp@»)=0 for every i=1,---,n and every
BYe &, ;
n—1

. A [ 1 \
(#)n if n>2, one has 3 |fi (xpw) —fi pm)| < 5 for every B"'e 4, .

1=1

() Nella seduta del 26 novembre 1983.
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We proceed by induction on n. First, for every B®e #,, choose in
B®\ K two distinct points %) , Y5 - This is possible since the set BO\ K
is non-empty and open and there is no isolated point in X.

Put

Dl = U {xB(l) yme} .

B e

Since the family %, is discrete, the set D, is also discrete. Now consider
the function g, : D; U K — R defined by

1 if X = XBu; » B(l) € .@1

& (%)=
0 if xeKor x=yp, , BPe%,.

Clearly, the set D, U K is closed and the function g, is continuous. Then,
by the Tietze extension theorem, there exists a continuous function f, : X — [0, 1]
such that fip,ox =g Thus, the first stage of our construction is complete.
Now, suppose that sets D,, -+, D, and functions f, - - -, f, satisfying (1); -
(3);,i=1,-.+,n, have been constructed. Let us show that it is possible
to define a set D,,, and a function f,,, satisfying (1), -(4),.1- Since the
functions f; ,i=1 -.-,n, are continuous, for every B*"e4,,, we can

n
choose in B\ (U D;u K) two distinct points Xp, 1), Y+ such that

=1

; 1
A;Zl | fs (xB(n+1)) —fi (yB(nﬂ)) | < —

2n+f ’

Put

Dn+1: U {xB(n-l-l) ’ yB(n+1)} .
Bntheg,

n+1
Let g,.1: U D; UK —R be the function defined as follows:

i=1

1 if x=’xB(,'),B(i)e-%i’i::l’...’n_i_l

Enw1 (%) ==
0 if xeKorx:yB(i),B(i)egi,i=1,...’n+1,

n+1
As the set (U D; u K is closed and the function g,,,, is continuous, there
i=1
exists a continuous function f, 4, : X — [0, 1] such that f,, ,, i = a1
U DiuK
1=1
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Of course, the set D, ; and the function f,,; satisfy (1), — (4)pu. Now,
or every x< X, put

Fl#) = Z fn(x) .

The function f is continuous, f(X) < [0, 1] and f(x) =0 for every xe K.
Moreover, if B®We %, , we have f (xgy)=1 and f (pm)=0.

Finally, let us show that int (f~*(#)) = o for every ¢e [0, 1]. Suppose,
on the contrary, that there exists a non-empty open set Q = X such that f, is
constant. Let z € N and BG)e #; be such that B = Q. By a preceding
remark, it must be 7 > 2. Then, we have

0= |f(xg) —f () =

;Efz B(n)) f1 (Vg Z—fi (xp0) ;fi C2N=)) -

t=n

2 55— % Uilege) —fi 00| > g — -

That is 1 > 2, a contradiction. Thus, our theorem is completely proved.

Remark 1. Theorem 1 gives a negative answer to Problem 3.2 of [2].
Now, we present some consequences of Theorem 1.

THEOREM 2. Let X be a perfect metric space and (Y , || - ||) @ normed space.
Then, for every comtinuous function f:X —Y and every ¢ > 0, there exists a
continuous function f.: X — Y such that

(1) int(f7O)=2  for evary yeY;
@ fe@—f@ <  for every xeX;
(3) f.(X) < conv (f (X)), provided that f is non-constant.

Proof. Put Y={yef(X):int(f*(y))# 2} and A,=int(f1(y)) for

every ye Y. Let K be the boundary of the open set {) A,. Plainly, the
ye¥

set K is closed and rare. 'Then, by Theorem 1, there exists a continuous

function ¢ : X —[0, 1] such that int (¢~1(f))=o for every te [0, 1] and
@ (x) =0 for every xe¢ K. We may assume ¢ < 1. If the function f is con-
stant, choose y e Y, with ||y [|=1, and; for every xe X, put

fe@)=f(x) +ep(*)y .
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If, on the contrary, fis non -constant, -choose ',y € f(X), with y' £ y",
and, for every x€ X, put

e (%) i
P f A
IO Ty —gen VI e X
- -= ’ €0 (x) "o 1
fe (%) £ 44 T —7 @i O —f) if xeA,
| /@) ToEeEN A
yeY

By means of the same reasonings used in the proof of Theorem 2.1 of [2],
it is possible to check that the function f, satisfies the thesis.

Remark 2. Theorem 2 gives a positive answer to Problem 3.1 of [2].
Another consequence of Theorem 1 is the following

THEOREM 3. Let X be a perfect metric space. Then, there exists a partition
F of X having at most the continuum power and composed of closed and rare sets.

Proof. By Theorem 1, there exists a continuous function f:X — [0, 1]
such that int (f~(¢))==g for every te [0,1]. It suffices to take F =

={f1()} tef(X) *

Remark 3. 1t is interesting to compare Theorem 3 with the classical Baire
category theorem.
We have, furthermore, the following result.

THEOREM 4. Let X be a locally connected, perfect and complete metric space.
Then, there is a partitionF of X, having the continuum power and composed of
closed and rare sets, and a relatively compact Gs-set X* < X such that, for
every QeZF, the set X* N Q is a singleton.

Proof. Let & be the family of all connected components of X. By Theo-
rem 1, for each I"e &, there exists a continuous function fr from I' onto [0,1]
such that int (/7' (t)) = o for every te [0, 1]. For every te [0, 1], put Q () =
=) fp* (). It is easy to check that the set Q (f) is closed and rare. Now,

Te&

fix '*e & By Theorem 3.4 of [3], there exists a relatively compact %;-set
X* < I'*, such that, for every te [0, 1], the set X* N f ! (#) is a singleton.
Plainly, the family # == {Q (¢)},c,1 and the set X* have the desired pro-
perties, ' :
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Before stating the final result we recall the notion of inductive openness
for a function. Let X be a topological space. A function f: X —R si said
to be inductively open if there exists X* = X such that f(Z*)=f(Z) and the
function fig. : Z* — f(Z) is open.

THEOREM 5. Let X be a connected and locally connected metric space. Then
any continuous real function on X is the uniform limit of a sequence of continuous
and inductively open real functions on X.

Proof. Apply jointly Theorem 2 and Theorem 2.4 of [4].
Observe that Theorem 5 specifies Theorem 3.1 of [2].
The authors wish to thank W.S. Watson for a useful discussion.
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