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Fisica matematica. —  Equilibria with non-rigid motions in 
a magnetoplasma <•). Nota ((*) **> di M assimo T essarotto <***>, presen­
tata dal Socio D. G raffi.

R ia ssu n to . — Si studiano soluzioni perturbative deirequazione cinetica di 
Fokker-Planck nella approssimazione « di raggio di Larmor piccolo » che corrispon­
dono a stati iniziali in presenza di moti non rigidi del plasma. Quali esempi si consi­
derano, in particolare, configurazioni di equilibrio idromagnetico spazialmente sim­
metriche.

1. Introduction

As is well-known, transport theory for quiescent magnetoplasmas (i.e. 
those in which turbulence is negligible) has been customarily developed only 
for a class of initial states which are appropriately “ near ” the local thermody­
namic equilibrium and are described by local maxwellian distributions, for each 
particle species present in the system [1]. On this limiting assumption are 
founded, in particular, all the present theoretical predictions of collisional 
transport (as is the case of the so-called “ neo-classical ” theory [3-5], which 
concerns, more precisely, toroidal axisymmetric hydromagnetic equilibria). 
On the other hand, it is well-known that the same type of limitation is shared 
by most turbulent-transport theories (see for example Ref.s [6-7] and further 
references therein indicated). [̂ 1

It has rceently been pointed out by the ^author] [1, 2], in the context 
of a kinetic approach to irreversible thermodynamics for magnetoplasmas, that 
even retaining a request of linearity of the material fluxes (of particle and ki­
netic energy, as well as of the electric current density) w.r. to the thermodyna­
mic forces, whichever they may be, a broader class of initial states may exist 
which are singular enough to persist, before reaching equilibrium, on a time 
scale comparable to (or even larger than) the shortest collisional relaxation time 
(i.e., the so-called collisional diffusion time) characterizing the temperature 
and density of the plasma.

(*) Research performed in the framework of the author’s participation in 
the activities of the « Gruppo Nazionale per la Fisica Matematica » of the Italian 
«Consiglio Nazionale delle Ricerche».

(**) Pervenuta all’Accademia il 2 agosto 1983.
(***) Istituto di Meccanica, Facoltà di Scienze, Università di Trieste.
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In this paper an example of this type is pointed out which concerns initial 
states in which non-rigid particle motions are allowed. As an illustration, the 
case of an hydromagnetic equilibrium which is spatially symmetric is considered.

The motivations of the present research are twofold. They follow, in 
particular, from the observation of the present inadequacy of theoretical pre­
dictions based on current transport models based on kinetic theory [8] and the 
realization that this might well require a refinement or a modification of the 
present mathematical models (and possibly of the mathematical methods of 
approximation currently adopted).

It is well-known from collisional transport theory [3-5, 9] that in closed 
magnetic configurations “ radial ” transport, i.e. the transport process occurring 
across isobaric surfaces, is essentially produced by collisional friction forces—due 
to Coulomb two-particle collisions—among the various particle species, which 
perturb their motion along the magnetic flux lines. Evidently such forces are 
strongly influenced by the relative average (“ bulk ”) velocities of such particle 
species. Therefore, initial states with non-rigid particle motions will corre­
spond, intuitively, to enhanced radial (as well as “ parallel ” , w.r. to the magnetic 
field) transport.

It is the purpose of this paper to show that for spatially symmetric systems 
(i.e. those in which the electromagnetic field and the one-particle distribution 
function have at least one ignorable spatial coordinate) there exist initial 
states of this type in the class of “ drifted ” maxwellian distributions. In parti­
cular, it is possible to show that such initial states relax toward thermodynamic 
equilibrium on a time scale comparable to or even larger than the collisional 
diffusion time.

An essential feature of the model is that the linearity of the basic equations 
(i.e. the so-called drift Fokker-Plank equation) is preserved, while additional 
thermodynamic forces are introduced in the problem. Since such forces 
—which are evidently related to the presence deviations from the local thermo­
dynamic equilibrium—are still in principle arbitrary, the model seems to possess 
enough flexibility for actual applications to the development of transport cal­
culations, both for quiescent and weakly turbulent magnetoplasmas.

2. Formulation of the problem

We intend to investigate a plasma magnetically confined and subject to 
the so-called approximation of “ small-Larmor-radius ” [9-11]. We look for 
approximate solutions of the Fokker-Plank kinetic equation:

(!) ( 4  +  * - V +  - L -  - W .  * , * ) = C ,  ( / I / )
\  dt m8 vv /

where f s = f s ( r , v , t) is the kinetic distribution function of the s-th species 
(s = 51 , r) , Fs — eg E +  msv A &8 (with E the electric field and Si8 ==; e8 B\msc
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with B the magnetic field) the Lorentz force and Cs ( /  | / )  is the Fokker- 
Plank collision operator in the Landau form, i.e.:

(2) ( /  I f )  —  ^ k = l , r < l s k
dv

J W S2u 
dv dv

f k  (»') —~ f s  (v) • dv

^ f A - ) ^ r J k ( v ' )dv

where u = : j v — v | , q8k == 2 ne\ e\ In A sJclm2S , being es and ms the electric 
charge and the mass of the s-th particle species, while In A slc is the Coulomb 
logarithm.

We adopt, for this purpose, a perturbative expansion previously described 
by the author [1, 9, 10], which coincides with the well-known neo-classical mo­
del for toroidal and axisymmetric configurations [11]. The relevant expan­
sion parameter is assumed (for each particle species) ss — r8lL (with sg 1), 
where rs — vthJ £ ls is the Larmor radius (as usual it is defined in terms of the 
thermal velocity vthtS to be introduced later) and L is the smallest “ characte­
ristic scale length” of the equilibrium configuration, i.e., L =  m in{L i} 
where (z =  1 ,2  , . . .) denote, for example, typical dimensions of the system
or the “ ^-folding length ” of E0 , B0 , N0,s =  Jd 3 vf0fS, etc. (namely —
=  I Bo* I / IVBojc 15 IE0* I / I VE0* I ; | N0>s | / | VN0>S | , . . . ) -  Here the notations 
are standard. Thus E0 and B0 are, respectively, the leading-order contributions 
to E and B in terms of a perturbative expansion made w.r. to ^  , . . . ,  sr , while
N0>s =  jd 3 vf0tS (r , v , t), with f s ( r , v , t ) = * esf itS (r , v , t).

We shall assume, as in Ref. [9], that B0 fulfills the hydromagnetic equili­
brium equation :

(3) , (V A B0) A B0 =  4 7T V7T0

where 7r0 =  3 2 S=lt r N0,s T 0>g is the kinetic pressure to leading order in e1} . . .  sr
with T0>s=  Jd3î;mgî;2/ 0>s/3 N0>s the temperature (we identify, thus vth)S —
=  (2 T 0,slms)Vz) • Here n0 is assumed to be of class Ca (D), being D a bounded 
and connected domain of R3 with boundary SD, where iz0 assumes a constant 
value.

In the sequel, we shall limit our analysis to the case in which SD is spa­
tially symmetric, namely it is assumed invariant w.r. to rigid coordinate trans­
formation. It is well known that under such an assumption there exist solutions 
of Eq. (3) of class C1 (D) which exhibit the same symmetry property [12]. They 
are denoted as “ symmetric hydromagnetic equilibria ” . In the cass of “ closed ” 
magnetic configurations, i.e. those in which the flux lines belong to a family 
of bounded and closed surfaces (magnetic surfaces), the only admissible 
symmetric hydromagnetic equilibrium corresponds to a so-called toroidal and
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axisymmetric equilibrium, whereas “ open” magnetic configurations may exhibit 
both cylindrical (i.e., rotational), axial (i.e., translational) and helical symmetry. 
Thus if 0 is a spatial coordinate which is ignorable for B0, in the case of toroidal 
configurations B0 will be of the form B0— ee B +  ex B, with Be and 0 
(where Bi =  B0* e iy with / =  0 , x and we have introduced an orthogonal and 
right-handed system of toroidal curvilinear coordinates (0 , X , denoting 0 
a toroidal azimuth); instead, for open configurations one may have both B0 — 

ee B0, as well as B0=  e x Bx (i.e., respectively Bx = : 0 and Be =  0).
Let us briefly recall [9-10] that in terms of the perturbative expansion pre­

viously introduced, a hierarchy of perturbative equations is obtained for f 8 (r , 
v , t) from Eq. (1) (and analogous equations follow from the Maxwell’s equa­
tion for electro-magnetic field). In particular, to the lowest order in ss results 
fo.s — /o,« (® , A , r , t) (where v — | v \ , X =  v] / B®2, v => ^  n +  v± with n =  
B0/B„ , v± =  \v L I (b cos £ +  p sin Ç) and Ç =  arctg (v • \\v  • p))y while to 
order 0(e,) one gets:

(4) ( ±  +  „v  •/„,» +  ÎL  E0 • A )  /o,s +  » A Qo.. • ~  / i . ,  — C, (/„ I/o)
\  & t tns o v j 3»

which delivers by taking the ^-average:

(5) ( —  +  ®il n • V +  i t  E0 • J L ) / 0>f =  C .( /0\ ° t  ms 3 vJ

and / ltS^= v A n • V/0i#/Qo,* > where we have defined / , = * / ,  +  / , ,  /«  =
2rt

=  (2 n)-1 (j) d Çf8. In general at each order ** (* ^  1) we obtain a perturbative
o

equation for f  itS and, taking the Ç-average, an equation for /*_ly8. Thus, in 
particular, to second order in e8, one gets the so called drift Fokker-Planck 
equation [9-10]:

(6) (*r- +  v \\ n ' V ' \  f lt9 =  — vd ,s * Y/o,«— — v \\ n • Ej n • —  fo,s +\  I ms 3 v

+  Cs(/0 I / i )

where vDtS — n A (jxVB -f ^  r  V^)/Q0,« is the diamagnetic drift velocity 
(with [X =  v 2J2  B the magnetic moment per unit mass).

We notice that the choice of the initial conditions for Eq. (1), and hence 
for Eqs. (5) and (6), as for all higher-order perturbative equations, is not com­
pletely arbitrary due to Eq. (3). Current transport theories [1-5, 9-11] assume 
that f 0iS is a local maxwellian distribution, for each particle species, constant 
on each isobaric surface (n • V/0,s =* 0) and subject to the condition of tem­
perature equilibration T 0>g — T 0jA; . In such an hypothesis it is necessary to
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infer that the average entropy production rate S ( /  \ f )  =* ( J d3 v In f s Cs
( /  I/) ) (where the brackets “ <  > s ” denotes an appropriately weighted average 
on an isobaric surface S) results of order 0 ( s2) (with s=* 1 , r), or:

(7) S ( /  I/ )  ~  0 ( s 2) (with e =  max {% , . . . , er})

and, more important, S ( / | / )  results, to leading-order w.r. to 0(es), a linear 
function of the material fluxes, whatever they are (and which can be identified 
here as the radial particle and kinetic energy fluxes and the electric current 
density vector J) [1, 2].

The request (7), which is usually denoted as “transport ansatz” may, however, 
correspond to a broader class of initial conditions for f 0tS. In particular, since 
to the lowest order in results:

S ( / | / ) s é S ( / o  \fo) =  i  2.,*-1, r ( ?«* j* d3 vds v' f 0s ( v ) f ok ( v )  ur3

(8)

{« A (m^1 —  ln /0 s — m j 1 —-  In / 0>* )s (with « =  » — »')

a solution / 0>s (r , v , t) of Eq. (5) which is compatible with (7) is clearly of the 
type:

(9) fo.s (r , v , t ) = / , ,  M ( r , ») +  £s /£ , (r , v  , t)

where f s M (r , v) is a local maxwellian distribution ( f s M (r , v) —  —
^3/2 Vth,s

exp (— v*lv9îhfS)) while f ^ s (r , v , t) must be compatible with Eq. (3). For this 
purpose we notice that Eq. (3) can also be written in terms of Ampere’s law as:

(3') (V AB0) AB0 =  1 ^ J 1 AB0
c

where

(10) J1= - S ^ . , « . [ d » w ( / 1. . + / g ) .

However, since tc0 — 3 S s=1> r N0>, T0jS, it follows from Eqs. (3), (3') and
(10) that:

(11) / m + / £  =  ® A* • .

One infers that j  (r , v  , t) is clearly non-unique.

5. — RENDICONTI 1983, vol. LXXV, fase. 1-2.
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The arbitrariness of f ^ s ( r , v , t) can be used, as previously pointed out 
[2], to investigate transport problems in “ transients ” (denoting here as “ tran­
sient ” a state of the plasma in which f liS decays in time on a time scale much 
smaller than the largest possible collisional diffusion time). However, it is 
interesting to note that in the case of symmetric hydromagnetic equilibria, non­
trivial initial conditions for f 0)S can be found such that the perturbation may 
persist before reaching “ equilibrium ” for times comparable to or even larger 
than the collisional diffusion time.

This situation occurs when:

(12) v . V f M ( r , v , t ) = , 0

while letting, in order to avoid the trivial solution:

(13) Cs ( /M I 0 (at least for some s — I , r ) .

A particular solution of Eq. (12) fulfilling Eq. (11) and the latter condition 
can be found in the class of drifted maxwellian distributions, namely:

( 1 4 )  A ? s  ( * • » » .  0  =  « 1 ,8  P c , s f u , S ( » • . » )  +  f u  ,8 ( r , V —  V 0tS)  +

+  hs(v)fMiS(r, v)

3 j) g
where pCiS=*ms v • —— +  —  A • —  is the conserved canonical momen-

90 c 90
turn, conjugate to 0 , with A the vector potential; furthermore:

n • Va1>5 =  n • Vks (v) =  0 ; g =  n • — r
9 0

~ "  ‘V fo th fS  > V q ,S ’ £ 0  ^ 0,5

with ee denoting the unit vector e —  V0/ | V0 | , being 0 an ignorable spatial 
coordinate for B0 . We notice that Eq. (14) can be formally obtained from a 
drifted maxwelfian distribution of the type / 0,s (r , v t , £) =  Ns (2n T slms)~sl2 
exp {— (v — nws)2msl2 T s} by a truncated power series expansion w.r. to ss .

Thus is it necessary to interpret the first term on the r.h.s. of Eq. (14) as 
a contribution due to a first-order drift motion along the direction e w.r. to an 
inertial reference frame (corresponding to a]>5 =  v0tS =  0); similarly the second
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term represents the contribution due to a zero-order drift motion, in the sense:

(16)

while results

----  ~ o ( 0
^th,s

(17) ~ 0 ( e f)
®th,s

with the definition v1>s =  2 T0jS 
more in Eq. (14):

3 V

a 0
For consistency, we require further-

(18) ^  ~ A , ( ® ) ~ 0(e,) (where v ~  vthJ  .

We stress that for generality v0 ®o. i (as well as vliS7^ vlt1c) for s 7  ̂k (s , k =5
=51 , r) . The case ?;0>g =  (z;1jS =  ^1>jfc) is well-known and corresponds to 
the case of a rigid motion of the plasma usually considered in collisional trans­
port theory. The particular solution (14) also includes, more generally, the 
effect of a non-rigid drift motion of the plasma along the direction e e (notice 
that e e need not be a constant unit vector).

Finally, the third term on the r.h.s. of Eq. (14) represents the contribu­
tion due to temperature and density perturbation to the local maxwellian distri­
bution f M,s {r yv , t )  .

The solution (14) fulfills evidently:

(19) Cs( / M | / « )  =  0

only if oc1>s=^ aq,* , v0>s =  v0tk and T li8 =  T1>t V$,A — l , r .  In order to 
prove th a t/q  5 fulfills Eq. (12) too, it suffices to notice, for example, that:

2tu
(20) J  di>± • V (m s v • — )  =  0 .

Thus the conservation equation for pe s :

(21)
3 # 3

_  +  i> • V +  Z E .  ___+ v A S t s
3t m9 3 v - )  Pc,s=^ 0

1 v)

5*
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implies to leading order w.r. to 0 (es) , after taking the ^-average:

(22) v • V (alySpCiS / MjS (r , v)) =  0

and hence Eq. (12) is obviously fulfilled by the first term on the r.h.s. of Eq. 
(14). Analogous results can be drawn for the remaining terms.

In conclusion, it follows that whereas Eq. (6) is invariant w.r. to the trans­
formation

(23) f l , s -+f l , s  + / m

if altS — oc1>k , v0 s =  v0tk and T 1>s =  T 0>& Vs , k —  1 , r (which corresponds, in 
particular, to a rigid drift motion of the plasma along the direction ex), this 
does not occur in general if T0>st^ T 0jA. at least for some species s and k or 

u-i,ic (or vo,s7^vo,k) (corresponding to a non-rigid drift motion of the 
plasma). This implies, in particular, that f lt8 (see Eq. (6)) is a function of 

=  »0„ — ®o,i • A(/2 = ; vltS — vltk and, respectively, T 1>s — T 1>t { s ^ k  with 
s , k f=i 1 , r).

As a final point, it is interesting to notice that whereas here the “ effect ” 
due to such drift motions has been assumed to be of first order in 0 (ss) (in fact 
/cu//o,s ^  0 (£s)) exact solutions Eq. (1) in the presence of zero-order (rigid) 
drift motions are well known in the literature [16]. However, since they are 
non-neutral, in the sense 2 S=1> r es N0>ŝ  0 , they do not correspond to a true 
situation of plasma confinement and are therefore not relevant to the present 
analysis.

Acknowledgements. This work has been performed in the framework of 
the author’s participation in the activities of the “ Gruppo Nazionale per la 
Fisica Matematica ” of the Italian “ Consiglio Nazionale delle Ricerche ” .

L i s t  o f  s y m b o l s  

A vector potential
A is ( i=  1, 3; $ =  1, r) thermodynamic forces
B magnetic field
B0 equilibrium magnetic field
D connected domain (c=R3) with boundary SD
E electric field
Erot inductive electric field
es electric charge
f s ( r , v , t) distribution function of the species s
fo,s (r > v , 0  equilibrium distribution function
f ls  first-order perturbation of the distribution function
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$
r is ( i = * i , 2)
L
m8
n —  B0/B0

electrostatic potential 
geometrical (radial) material fluxes 
characteristic scale length of the equilibrium 
mass

Ns
7T0 

Pc ,s
rs
S

vb ,s =  n
®i,s

number density 
kinetic pressure
canonical momentum conjugated to the cyclic coordinate 6 
Larmor radius
average of the local entropy production rate on an isobaric surface
(7u0 =2 const.)
temperature

A (fJiVB +  tff| n • Vn)lQs diamagnetic drift velocity
drift velocity along the direction ee(i  =  0 ,1 )
Larmor frequency
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