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Equazioni a derivate parziali. — Semigroup approach to the
Stefan problem with non-linear flux. Nota *) di ENRIcO MAGENES **),
Craupio VERDI **9) e AucusTo VISINTIN ****), presentata dal Cor-
risp. E. MAGENEs.

RiassuNTo. — Un problema di Stefan a due fasi con condizione di flusso non
lineare sulla parte fissa della frontiera & affrontato mediante la teoria dei semigruppi
di contrazione in Ll. Si dimostra I’esistenza e 1'unicitd della soluzione nel senso di
Crandall-Liggett ¢ Bénilan.

Here we study the two-phase Stefan problem in more space variables with
a non-linear flux condition on the fixed boundary. Denoting the space domain
by Q and the enthalpy density by #, we have a problem of the form

%—Aﬁ(u):f in Q x]10,T[
® 1 29 =0 on 0 xj0, T
u(0)=u0 in Q;

the non-decreasing function f is characteristic of the material, B (#) represents
the temperature, f is a datum and g is a given (in general non-linear) function,
as for the classical Stefan-Boltzmann radiation law.

Following the classical variational formulation in L2 (Q) (for a discussion
and further references see [12], e.g.), problem (P) has been recently studied
in [5, 14, 15]. Here we use an approach based on the theory of non-linear
contraction semigroups in L!(€Q), following ideas and techniques used

(*) Pervenuta all’Accademia il 14 luglio 1983.
(**) Dipartimento di Matematica dell’Universitd di Pavia e Istituto di Ana-
lisi Numerica de! C.N.R. di Pavia.
(***) Istituto di Matematica, Informatica e Sistemistica della Universita di
Udine.
(v*##) Istituto di Analisi Numerica del C.N.R. di Pavia.
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for similar problems in [2, 3, 4, 7, 8, 9. We show that the operator
Aw == — AB(w) with domain

B (w)
D (A) ={we L} (Q) | B(w)e W1 (Q) , AR(w)e L1(Q), > +
+ g(B(w))=10on I'}
generates a contraction semigroup in L!(Q); this yields the existence and uni-
queness of the generalized solution of problem (P) in the sense of Crandall-
Liggett and Bénilan. This approach seems especially useful for the nume-
rical solution (see [3, 13]). '

§ 1. 'THE CASE OF NO INTERNAL SOURCE (f==0)

Let QRN be a bounded regular domain for instance of class C*, with
boundary I'. Let

g :R — R Lipschitz-continuous and non-decreasing, $ (0)=:0
? { 1B(])|=C, 18| —Cy VEeR(Cy, C,: positive constants)
(it is not restrictive to assume that the Lipschitz-constant of 8 is 1)

g€ C'(R) non-decreasing, g (0) =0
@ { lg() |1=Cs|E|+Cy VEe R(Cy, Cy: positive constants)

(an explicit dependence of g on ce€ I’ would cause no further difficulty).
‘We introduce the non-linear operator A : w — AB (w) with domain

D A)={we L' (Q) | B(w) e W (Q),

AB(w) € 1L1(Q) and“g_i(i"l +2(B@)=0 onT}.

2
Here the trace B (w) and the external normal trace —iﬁﬁ)— are unders-

tood in the sense of Gagliardo (see [10] e.g.) and are in L1(T"); by the growth
assumption on g, also g (B (w)) € L1(T"). The condition on T' can also be written
in the form

3) fVB (w)-Vodx —|—fg(ﬁ(w)) - vdo = — fAB (w)- vdx Yoe CH(L).
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ToeEOREM 1. A is m-accretive in L' (Q), that is
{ VfeL (Q), vA>0, 3'we D (A) such that

w—MBw)=f ae in Q, ie

4)
fw-v dx + )\fVB(w) - Vodx + kfg(ﬁ(w)).v dc:ff.vdeve C1(Q),
Q Q T }2

(5) VAr >0, (I + A is a contraction in L' (Q) (I = Identity) .

Proof. 'This is split into several steps.
p p

(i) Unigueness of the solution of (4).

Let @, , w, be two solutions; setting 0;==B(w;) ({==1,2) we have

(6) ei_— 7\A61 :f*—wi + ei = (I),- in Q
20,
o ~ B gey=u o
v

Let {®;,,eL2(Q) }nen » ($i,n€H%(T)}en be such that @, — ®; strongly
in L* (Q), $;,, — ¢; strongly in L (T); by well-known results (see [11], e.g.),
the elliptic problem

(8) O.i,n -— )\Aei,n == (I).,;," in Q

ae'i,n

© "

=0 on I'

has one and only one solution 6;, ¢H?(Q). By Lemma 2.3 of [4] we have
(10) 16, —0inllwii SC( iy — PilliLt ey + | Yin— i llL1my)
with C constant independent of ¢, n; therefore
(11) 0;n— 0; strongly in W1 (Q) asn—o0.

We approximate the Heaviside graph H as follows
(12) HeC'R)}ljen» » H;=Z0 , H;()=0 for £<0,

H;(§=1 for £ ..

J
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Taking the difference between (8) written for =1, 2 and multiplying
by H; (6,,, — 8,,,), we get

(13) f (Orm— 05.) - Hj (Bun — b5.) dt + f V (Byn— 6a) Y H, (B —
Q

Q

Ou) A+ 2 [ — darn) - Hy (B — B1.0) do f (@0 — By 1)

Q

*Hj (81,0 — 05,5) da;

as H; =0, the second integral is non-negative; we can assume that the
sequences {®;,} and {{;,} are dominated by integrable functions for : =1, 2;
thus taking # — oo in (13) we get

J0— 0041, 00— 0 dx 2 [12 09 —g 0 1, (0, — 0 d =

= f((l)1 — @,)-H; (0, —0,) dx = {[(61 — 0y) — (2, — wy)] - H; (6, —6,) dx.

Q Q

The second integral is non-negative by the monotonicity of g and the se-
cond member is non-positive by the properties of B; thus taking j — co we get

f(el—ezy dx<0.

Interchanging 6, and 9, we have 6, = 0, a.e. in Q, whence by (6) w; = w,
a.e in Q.

@) Vfe L2 (Q), VA >0,3we D(A) solution of (4).

Using a standard procedure, we approach B and g by two sequences describ-
ed by a positive parameter ¢ as follows

B.eC*(R), 0<e=p'=1, B (0)=0, B — B uniformly in R
2:€C*R), g.>0, g.(0)=0, g. ¢ uniformly in R;

we also assume that B, is uniformly Lipschitz-continuous and that g, fulfills
an order of growth assumption as in (2); moreover let

(14) f:cC® R) , fo —>f strongly in L2 (Q).
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We consider the c-regularized problems corresponding to (4); setting
0. = B(w.) , R. =B, — I, this can be written also in the form

(15) 8. — 280, + R, (68,) =/, in O
(16) aaes tg.(8) =0 on T;
v

by well-known results (see [10], e.g.), this problem has one and only one so-
lution 6.c C! (Q), for instance. Multiplying (15) by 6., by a standard procedure
we get the a priori estimate

17) I 6l H1y = Ca (constant dependent on A but not on ),
whence | 6. || L2y = C, and by the assumptions on g,

(18) ll ge () Il L2y =G

by the assumptions on B and B., (17) entails also

(19) [| e lL20) = C. -

By the previous a priori estimates there exist w, 0, v such that, possibly
taking subsequences, as ¢ — 0

(20) w, —w  weakly in L2 (Q)
(21 0. = Be (we) >0  weakly in H* (Q)
(22) Ze (Be (we)) >m  weakly in L2(T).

Using standard monotonicity techniques, one can show that
(23) 0=f(w) ae. in Q, n=g(B(w)) ae. on I,
therefore taking ¢ — 0 in (15), (16) a solution of (4) is obtained with the further
regularity
we Lt(Q) , B(w)e HY(Q) , AB(w)eL2(Q).
(i) VYA >0, (I+ 2A)yt: L2(Q)—>L2(Q) is a contraction with respect to
the norm of L'(Q);

i.e. for any f;, f,€L?(Q), denoting the corresponding solutions of (4)
by w,, w,, we have

(24) | ooy —w, || L 1w = A — /2l L1() *
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In order to prove this, we consider f,¢, f,¢ as in (14) and denote the cor-
responding solutions of (15), (16) by @, ¢, wyc. Taking the difference between
(15) written for ¢=1, 2 and multiplying by H; (6, — 6,¢), we get

f (W00 — w3.e) - H, (8.0 — 0.0) dx + 2 f V (Bue — Bsc) - VH, (B0 — Oy0) d +
Q

Q

3 [lge (00— 0201 H, (O — 0, do

= f(fls —Jfoe)  H; (0 — 8,0 d,
o
whence; as the second and third integrals are non-negative,
(25) J‘(wl,g'— w2’g) * Hj (01’3 _ 62’5) dx § f(ﬂ,g—fz,s) M H] (61’3 b 82,5) dx é
Q Q

= lhe—feell L@

Note that, denoting the Heaviside graph by H, there exists y € H (0, .- 0,,)
such that

H; (0,0 —0a2c) >y  weakly star in L (Q);

by the strict monotonicity of @, we have also y€ H(w, . — w, .}, hence taking
j— o0 in (25) we get

(26) [ — w0)* + dv = 1 fietael 1o

Q

Interchanging ;. and w,. we have

(27) J@se— " 45 S foe = I

Q

and then taking ¢ —0 in (26), (27) we get (24).
(iv) VfeL'(Q), VA >0, Jwe D (A) such that w—NAB (w) =f ae in Q.

Let {f,cL2(Q)}peN s fo—f strongly in L' (Q); denote by w,, the solution of (4)
corresponding to fn‘ Thus, setting 0, = B (wn) ,0,€ {6 € Wl’l(Q)l AfDell (Q),

zv_e 4+ g(8) =0 on I'} and

(28) 0, — A0, =f,—w,+ 6, in Q.
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By (iil) {w,}, . is a Cauchy sequence in L' (Q), thus there exists
wel' (Q) such that

w, ~w  strongly in L1(Q),
whence, as 8 is Lipschitz-continuous, also
0, ==B(w,) - 0=F(w) strongly in L1(Q) ;
therefore
fo—wo+0,—~f—w-+ 06  strongly in L1(Q)

and taking n — oo in (28) we get that w solves (4) since -A is m-accretive in
L1(Q) with domain D (see [4], e.g).

v) VA>0, (I+ 2AA) is a contraction in L1(Q),
ie. Vfy,f€L'(Q), denoting the corresponding solutions of (4) by w,, w,,
(29) lon —wall 1) S A —S2ll 1) -

In order to prove this, let {f;,€ L2(Q)}pen » fi,n —f; strongly in

L1(Q) (f=1, 2); let w;,, denote the solution of (4) corresponding to f;,. As
we proved in (iv)

w;,, —w; strongly in L (Q);
by (iii)
| @y,n — wz,n“L1(g) S [ fin _f2,’n“L1(Q)

and taking n — oo we get (29).

THEOREM 2. D (A) is dense in L' (Q).

Proof. As

D(A), = {we LA(Q) | 8@ (@) , Ap@eLx(@), P 4 o) =0
on T} < D(A)

and the inclusion D(Q) = L1(Q) is dense, it is sufficient to prove that

Vfe D(Q), setting wy =+ M)'f with w eD(A),,
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then
wy, —f strongly in L2(Q) as A -0,
or equivalently

(30) AAB(w;) — 0 strongly in L2(Q).

To this aim we consider the regularized problems in B, g, fe =f with so-
lutions w, . and we multiply the corresponding equation (15) by — AR, (wx..) »
getting

fvwk,s * VBe(whe) dx -+ &Ze (Bz (w)\,e)) *Whe ds +

Q r

-~

Q

A f[Aﬁe (@30)]* dx = f Vf* VBe (w3.6) do < || VIl 2 -
Q

1 VBe (,e) Il 2 -

As g. (0) =8, (0) =0 and g., 8. are monotone, the second integral is non-
negative; moreover, by the properties of @,

[Veoe -V @r doz [198, (0) 2
Q

o

Q

hence
1 VBe @0.0) %00 + | ABe (@06 12 260 = 1V ll 2y * | VBe (e 2

whence
| VBe (i) I 20y = C (constant independent of A and ¢)

and then also
A ” Aﬁe (w)\,s) “iZ(Q) é C y
which yields (30).
CONCLUSION

The operator A:D (A) —~L*(Q) generates a non-linear semigroup of
contractions S (f), defined by Crandall-Liggett’s formula (see [6]):

t
Ve L1(Q) , S (fuy==lim (I + — A)—” 4y uniformly in [0, T].
7.=>0C n
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Moreover, u(t) = S (t)u,e C° ([0, T]; L' (Q)) is the generalized solution
in the sense of Crandall-Liggett [6] and Bénilan [1] of the abstract Cauchy
problem : '

(31) %—I—Au:O , u(0) =1,

or equivalently of problem (P) (see introduction) with f=0.

§ 2. THE GENERAL CASE (f#%0)

Let fe L1(Q x]0, T[); let f,=f* constant in [kL, (& + 1)f_[ for
n n
k=0,.--,n—1 and such that f, —f strongly in L' (Q x]0,T[). Then

”n

Vip eL1(Q) , U (f)up= lim TI (1 n ;t A— ,’:))"luo

r—>0 k=1

(uniformly in [0, T]) is the generalized solution (see [7]) of the abstract Cauchy
problem

du
Z 4t Au=f |, 0) =u,,
dt+u f u(0)=u,

i.e. of problem (P).

Remark. Under natural assumptions on u, and g, the solution # of
problem (P) with f==0 fulfills a maximum principle: M, < u < M, (M, , M,:
constants) (by means of an argument similar to one used in [15]). This allows
the removal of the assumption on the growth of g (see (2)); therefore the above
results apply also to the case of a flux governed by the classical Stefan-
Boltzmann radiation law

g (1) =C(x* — o) ;

here 1 denotes the absolute temperature, v, is the temperature of a source and
C > 0 is a physical constant.
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