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SEZIONE I

(Matematica, meccanica, astronomia, geodesia e geofisica)

Analisi matematica. — FEvolution equations for a class of non-
linear operators *). Nota ** di Ennio DE Giorci **), Marco
DEeciovannNt ®**)  ANTONIO MARINO ***) e MARIO TOSQUEs (****)
presentata dal Corrisp. E. DE GIoRrGI.

RiassuNTO. — Se A & un operatore in uno spazio di Hilbert e V & un sottoin-
sieme di questo spazio, in molti problemi si ¢ indotti a modificare A sul «bordo »
di V in modo da ottenere un operatore A tale che le soluzioni dell‘equazione diffe-
renziale associata

0 U’ + A (U)

non escano da V. .

Se V non & convesso, ’operatore A non rientra nei casi classici esaminati, ad
esempio, in [1].

In questo lavoro introduciamo alcune classi di operatori che contengono, in
qualg;he caso significativo, quelli del genere sopra considerato e forniamo alcuni teo-
remi di esistenza e regolaritd per le soluzioni dell’equazione differenziale associata.

INTRODUCTION

The classical notion of the evolution equation
(1) U 4+ AU)=0

associated to a smooth non-linear operator A has been the object of several
studies in order to extend this notion to different situations wherein the non-
linear operator is of a more general type. One of the theories developed in this

(*) Lavoro eseguito nell’ambito di un progetto nazionale di ricerca finan-
ziato dal Ministero della Pubblica Istruzione (409, - 1982).
(**) Pervenuta all’Accademia il 21 luglio 1983.
(***) Scuola Normale Superiore, Pisa.
(****) Dipartimento di Matematica, Pisa.
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direction is that of operators of monotone type, which has made possible the
reformulation of the concept of evolution equation in a manner su table for
many concrete situations and has furnished many brilliant results. It is,
however, important to observe that, already in this theory, the lack of symmetry
in the definition of monotone operators leads to a loss of several symmetric
properties of the equation associated with them. In fact, if A is a monotone
operator in a Hilbert space, a solution U of the equation

@) Oe U’ + A (U)

satisfying an assigned initial condition U (O)=—u, (as is well known, such a
solution U exists if A is ““maximal” monotone) is, in general, defined only in
a right (half) neighbourhood of O and is unique only in such a right neigh-
bourhood, as two different solutions may coincide at the same point u,.

Some results have also been obtained for certain operators close to mono-
tone operators, as for example, for the perturbations of these by Lipschitz
operators.
l# New difficulties arise when it is necessary to work outside this class in a
more decisive manner, as happens, for example if, in addition, we also require
that the solution of the equation (2), associated to the operator A, should
remain in some non convex set V.

Already in the simple case in which V is the closure of a smooth open set
Q in R?, if A, is a monotone operator in R? and A, is a smooth operator then
the operator A, defined by

{o + Ay (w):achy(u) } fucQ
{o+ A @) — (¢ + A (@) [v (@) AO)v(x): xeho(u)}
if ueaQ

A(u):{

where v is the exterior normal to 9(), is evidently not of the type considered
unless Q is convex.

Along similar lines we can consider the somewhat more complicated case
in which A, and A, are defined on a function space and V is an “ irregular ”
subset of this function space (defined, for example, by a pointwise inequality
(cfr. (2,7)) but not by an inequality of integral type): it would naturally be
necessary to define the operator in a suitable manner at points of V which,
in some sense, constitute the boundary of V.

In this note, as in the papers [3], [4], [5], [6] [7], we shall consider classes
of operators which include those to which we have just now referred, in addi-
tion, naturally to Lipschitz perturbations of monotone operators.

It is because of these reasons that the solutions of the evolution equations
exhibit the same loss of symmetry as we have indicated in the case of mono-
tone operators.

We wish to consider henceforth a class of operators, which seems to us
to be particularly significant among those considered.

We shall begin with a definition.
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Let Q be an open subset of a real Hilbert space and f: Q —R (U {-+ oo}
an extended real valued function on it.

Definition. If ueQ where f(u) < + oo we shall denote by a7f(u) the
set (possibly empty) of all the « in H such that

lim inff @) —f (@) — (2| v —u) =0

v u |v-—u |

we set o~ f (u)= @ at other points u of H.
If f(u)# @, f is said to be sub-differentiable at # and the element of

af (u) (which, as can easily be verified, is closed and convex) having the
min‘mum norm is denoted by grad— f (u).

For many applications it is of interest to consider the operator 3- f when f
is a lower semi-continuous function and satisfies the following property:

3) there exists a continuous function ® = R' —R such that
fOQO=fW+@lv—u)—0(ul|,f@),|z])|v—ul

for u, veQ and aed f(u).

We remark that in the condition (3) above we do not explicitly require that
o f(u) #* @ for some u.

In the following H will denote a real Hilbert space with |- | and (.].)

as the norm and the inner product respectively and P (H) will denote the set
of all subsets of H.

Any map A : H —P (H) will be called ‘Aan operator on H and we set
DA)={ueH | Au # z}
inf {|«| |eeAu}, if weD(A)
|Agu | =
+ oo , if ueH\D (A).

If Q is an open subset of H and if f: Q —~ R U {4+ oo} is a function,
we set

D(f) = {ueQ|f () < + oo},

J max { 0, lim sup 1) —/(® } if fu) <+ oo
v->u |u—'v|

IV 1 (0) =

l + o0 otherwise
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We say that a sequence of functions (f,),,v is equicoercive if for every
¢ in R the set

U{veQ |f, <c} has a compact closure in Q.
heN
Finally, if U:[t,% +3[—>H is a curve, we set

U.(t,) = lim U®H)—U) whenever it exists.
t_"'to

t—>!<(‘;

§1

Suppose €2 is an open subset of the Hilbert space H, f: Q — R {+ oo}
a lower semi-continuous function and A :H —P (H) an operator such that

D (&) < D(f).

(1.1) Definition. If « :R®* —R is a continuous function the operator A
is said to be “(w,f) — monotone ” if

(OC-B|“—-‘U)2—L0(|MI, |‘U|,f(u),f(‘v), l“]’iﬁl)lu—v 2
for u,ve'H and ac Au, e Av.

We remark that, if @ is a constant, we get the Lipschitz perturbations of
monotone operators (cfr. [1]).
A more general class of examples will be given later (cfr. (2.7)).

(1.2) PRrOPOSITION. Let A be an (w,f)-monotone operator and let U,
V:[O, T] —H be two absolutely continuous curves in H such that

U (t)e — AU (@), V' (t)e —AV (f) ae. in [0,T]
and
(U@, IV, oU@,foV(E), U@, V(@) [)el (O, T)
(for instance, this is the case if U and V are Lipschitz maps and fc U, foV are
bounded).

Then, we have:
t

VO—Y@1=ITO—=YO lep ([0 UG IVE /U6,

0

FOV(s), 1U () 1, | V' (s) [)ds).
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Another important condition on A in order to get a solution of the evolu-
tion equation (2) is given in the following definition.

(1.3) Definition. A is said to be * f-solvable ”” at a point u of Q, if for

every ¢ > 0, there exist 7, A, > 0 such that whenever 0 < A < 2,, v H and
lu— o —w
[

and f(w) <f () + 7

v—w ! <»

|
[

. . v
<< ¢, there exists a w in Q such that - cAw,

(1.4) PrOPOSITION.  Let A be an (v , f)-monotone operator which is f-sol-
vable at a point u of D (A). Then A u is a convex closed subset of H and for every
K, there exists 3 > 0, such that, for every K <K,, the set

B(u,8) NfoeQ| [Avl <K,f(o) <K}

ts closed.

In the following Ay u will denote the element of Au having the minimum
norm.

(1.5} TrHEOREM. Let A be an (w , f)-monotone operator which is f-solvable

at every point of D (A). Then, for every u, in D (A), there exists a T > 0 and
a unigue Lipschitz curve

U:[O, T [—H such that f o U is bounded and

{ U, #®)=—A, U@, vte[O,T]
U (0) =u,.

(1.6) TuroreM. Let the hypotheses of Theorem (1.5) hold. 1If (u,), is
a sequence in D (A) which is convergent to an element u of D (A) and sup {| Agu, |
V f(un)} < + oo, then there exists a 'T > O such that the evolution curves U, , U
given by Theorem (1.5) with U, (O) =u,, U (O)==u, are all defined on [O,T]
and the sequence (U,), converges uniformly to U on [O,T].

(1.7) 'THEOREM. Suppose that A satisfies the hypotheses of Theorem (1.5)
and that for every K,,K; in R the set {ve Q| |Ago |<K,,f(v) < Ky} s
closed in Q.

Let U :1—Q be acurvein Q such that it is Lipschitz on compact subsets of
I,fo U is bounded on compact subsets of 1 and U’ (t)ye — AU (¢) a.e. on 1.
Then we have the following:
a) U(t)e D(A) for every t in I;
b) UL(t)=—A,U(¢) iftel, t<supI;
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¢) the map t — A, U (¢) is continuous on I outside possibly a countable
subset of I; -

d) if I is the maximal interval of existence of U and sup I < + oo then

lim [A,U() |V foU@®) Vd(U @), 20)'— + oo

t—supl

(1.8) 'THEOREM. Suppose that
a) A is an (o, f)-monotone operator with
o=y (%, %5, %5, x,) (1 + 5% + x7) where y :R* =R
s a continuous function,

b) A is f-solvable at every point of D (A) and for every K,,K, in R,
the set {veQ | [Ayv | <K, f(v) < Ky} it closed in Q,

¢) there exists a continuous function 0 :R® —R such that

fFEQz=f@)—0ul,f(), |grad f@) ) |[v—u|
if ve H, and ueD (5 f),
d) D(A)< D(3f) and there exist => O, two continuous functions
¢ :R—>R, ¢, : R?* >R such that:
(grad- £(u) | Agw) = ¢ | Agu [2— 4y (f(@) if ue D (A)
| grad~ f(w) | < ¢2 (1 Aon |, f(w)) if ue D(A).

Then, for every 4, in F = U {ve D(A)|f(v) <K},
KeR
there exist a T > O and a unique curve U in H>2(O, T ; H) such that f¢ U

is bounded and

U,@#t)=—A,U() for every ¢t in [0, T
{ U(O)=1u.

Note that, even if A is a maximal monotone operator (cfr. [1]), then there
does not, in general, exist a function f satisfying the hypothesis of Theorem
(1.8) and such that D(A) <F.

§2

) (2.1) THEOREM. Suppose o f to be an (w, f)-monotone operator. Then
& f is f-solvable at every point u of Q such that o~ f(u)# & .
- Moreover if ue Q, ‘

|Vfl(u) <+ co if and only if o-f(u)#~ &
and

|V (@)= |grad-f(u) | , if &f(u)# o .
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(2.2) THEOREM. Let us suppose 9~ f to be an (o ,f)-monotone operator.
Then for every u, such that o f(up)7~ @ , there exists a 'T > O and a unique
Lipschitz curve U : [O, T [— H, such that fo U is Lipschitz continuous and

UL(t)=—grad-f(U(¢)) , if te[O,T]
(foU)L () =— | grad-f(U(#) |* if te [0, T[
U©O)=1,.
The class of functions which satisfy the hypotheses of Theorem (2.2),

represents a generalization of the class of (p, g)-convex functions introduced in
[4], whose definition we recall here:

(2.3) Defimtion. Let p,q be two real numbers with p > O. Then a
lower semicontinuous function f: H -~ R {4 oo} is said to be (p, ¢)-convex
if for every pair u, v in H, there exists a 2 in H such that

u-t+ov
2

splu—vo?, 2f()) <f@)+f(0) —2qlu—vo[®.

-

It is easy to deduce, from the results of [4], that if f is (p, ¢)-convex, the
hypotheses of Theorem (2.2) are satisfied with Q = H, o (% .-+ %) =

=16(p (% + %) +q7) .

(2.4) Remark. A class of functions, satisfying the hypotheses of Theo-
rem (2.2), which seems to be useful for applications, consists of functions f
such that

there exists a continuous function @ : R® —R such that
23 fO=f@W+(elo—w)—0(lul, fw), [« ]} ]o—ul?
i u, veQ, ac o f(u).
The class of functions introduced above, possesses a certain stability pro-

perty described in the following theorem.

(2.6) THEOREM. Let (f;) v be a sequence of equi-coercive, functions satisfy-
ing (2.5), with a © independent of h.
Let us suppose the existence of

P(H) lim f=7: Q ~RU{+ 00} (cfr. 2.

Then f also satisfies (2.5) with the same @ .
We can easily deduce, from the results of [5], the following remark.
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(2.7) Remark. et h:R"—R be a C? function such that #1(O) is a
non-empty compact set such that grad h(x)== O where k(x) =0 .

Let P, Q be in #7'(]—o00,0]). If we set Q=H=(L2(0, 1)),
and f is the function defined by

1/2J'|u'(t) 2ds if we (H'2(0, 1)y, u(0)—P, u(1)—Q,
Fy= h@(t) <O, Vie[O, 1]

4+ oo elsewhere,

then f satisfies the condition (2.5) with

D (,, g, %5) = p (¥3) (1 4 x%)

where p : R — R is a continuous function.

Moreover, in this case,
f(wy#£ o if and omy if f(u) < 4 oo , ue(H>2O, 1))
and ae o~ f(u) if and only if « is of the form
o=—u"+ B grad h(u) where e 1.2(0,1), B=0O and
B(s)=O0 if h(u(s)) <O.
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