# Atti Accademia Nazionale dei Lincei <br> Classe Scienze Fisiche Matematiche Naturali RENDICONTI 

## Enrico Jannelli

# Weakly hyperbolic equations of second order well-posed in some Gevrey classes 

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 75 (1983), n.1-2, p. 19-23.<br>Accademia Nazionale dei Lincei<br>[http://www.bdim.eu/item?id=RLINA_1983_8_75_1-2_19_0](http://www.bdim.eu/item?id=RLINA_1983_8_75_1-2_19_0)

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Equazioni a derivate parziali. - Weakly hyperbolic equations of second order well-posed in some Gevrey classes. Nota (*) di Enrico Jannelli ${ }^{(* *)}$, presentata dal Corrisp. E. De Giorgi.

Riassunto. - L'equazione $u_{t l}=\sum_{i j=1}^{n}\left(a_{i j}(x, t) u_{x_{j}}\right) x_{i}$ in condizioni di debole iperbolicità $\left(\sum_{i j=1}^{n} a_{i j}(x, t) \xi_{i} \xi_{j} \geq 0\right)$, è b n posta negli spazi di Gevrey $\gamma_{l o c}^{(s)}$ con $1 \leq s<1+\frac{\sigma}{2}$, purché $a_{i j}$ sia di Gevrey in $x$ di ordine $s$ e risulti

$$
\left[\sum_{i j=1}^{n} a_{i j}(x, t) \xi_{i} \xi_{j}\right]^{1 / \sigma} \in \mathrm{BV}\left([0, \mathrm{~T}]: \mathrm{L}_{l a c}^{\infty}\right)
$$

## 1. Introduction

In this work we shall deal with the following equation:
(1)

$$
\left\{\begin{array}{l}
u_{t t}=\sum_{i j=1}^{n}\left(a_{i j}(x, t) u_{x_{j}}\right)_{x_{i}} \quad \text { on } \mathbf{R}_{x}^{n} \times[0, \mathrm{~T}] \\
u(x, 0)=\varphi(x) \\
u_{t}(x, 0)=\psi(x)
\end{array}\right.
$$

The matrix $a_{i j}$ is a real symmetric matrix having the following properties:
i) $\quad \sum_{i j=1}^{n} a_{i j}(x, t) \xi_{i} \xi_{j} \geq 0 \quad \forall t \in[0, \mathrm{~T}], \forall(x, \xi) \in \mathbf{R}^{2 n}$;
ii) There exists a number $\sigma \geq 1$ such that, $\forall \mathrm{K}$ compact subset of $\mathbf{R}_{x}^{n}$, $\forall \xi \in \mathrm{R}^{n}$

$$
\left[\sum_{i j=1}^{n} a_{i j}(x, t) \xi_{i} \xi_{j}\right]^{1 / \sigma} \in \mathrm{BV}\left([0, \mathrm{~T}] ; \mathrm{L}^{\infty}(\mathrm{K})\right) ;
$$

(*) Pervenuta all'Accademia il 21 luglio 1983.
(**) Scuola Normale Superiore. Pisa.
moreover

$$
\sup _{|\xi|=1}\left\|\left[\sum_{i j=1}^{n} a_{i j}(x, t) \xi_{i} \xi_{j}\right]^{1 / \sigma}\right\|_{\mathrm{BV}\left((0, \mathrm{~T}) ; \mathrm{L}^{\infty}(\mathrm{K})\right)}=\mathrm{M}_{\mathrm{K}}<+\infty ;
$$

iii) For any K compact subset of $\mathbf{R}_{x}^{n}$ there exist some positive constants $\Lambda_{\mathrm{K}}, \mathrm{A}_{\mathrm{K}}$ such that

$$
\left|\mathrm{D}_{x}^{\alpha} a_{i j}(x, t)\right| \leq \Lambda_{\mathrm{K}} \mathrm{~A}_{\mathrm{K}}^{|\alpha|}|\alpha|^{|\beta| \alpha \mid} \forall(x, t) \in \mathrm{K} \times[0, \mathrm{~T}], \forall \alpha \in \mathbf{N}^{n}
$$

for a fixed number $s \geq 1$ (i.e. the matrix $a_{i j}$ belongs to the Gevrey class $\gamma_{l o c}^{(s)}$ in $x$, uniformly with respect to $t$ ).

From these hypotheses we have obtained the following

Theorem 1. Let $\varphi(x), \psi(x) \in \gamma_{l o s}^{(s)}$. Then problem (1) has one and only one solution $u \in \mathrm{C}^{1}\left([0, \mathrm{~T}] ; \gamma_{l o c}^{(s)}\right)$ provided that

$$
1 \leq s<1+\frac{\sigma}{2}
$$

Remark 1. If $a_{i j}(x, t)=a_{i j}(t)$, the result of Theorem 1 is contained in [2], where a class of counter-examples shows that this result, in a certain sense, cannot be improved.

In connection with Theorem 1, for coefficients hölder continuous in $t$, see also [4].

## 2. Sketch of the proof

The idea of the proof is to approximate problem (1) by means of a family of strictly hyperbolic problems with sufficiently smooth coefficients and to show that the corresponding solutions are bounded in $\mathrm{C}^{1}\left([0, \mathrm{~T}] ; \gamma_{l o c}^{(s)}\right)$, in order to obtain a sequence converging in $\mathrm{C}^{1}\left([0, \mathrm{~T}] ; \gamma_{l o c}^{(s)}\right)$ to a solution $u(x, t)$ of (1). After this, the uniqueness of the solution of (1) is obtained by a duality method.

In order to illustrate the situation, let us consider the simplest case of (1), i.e. the equation

$$
\left\{\begin{array}{l}
u_{t t}=a(t) u_{x x}  \tag{2}\\
u(x, 0)=\varphi(x) \\
u_{t}(x, 0)=\psi(x)
\end{array}\right.
$$

where $a(t) \geq 0$ and $a(t)^{1 / \sigma} \in \mathrm{BV}([0, \mathrm{~T}])$; moreover, as a further simplification, we suppose $a(t) \in \mathrm{C}^{1}([0, \mathrm{~T}])$ (this last hypothesis is removable).

From [3] it is known that problem (1) is well-posed in $\gamma_{l o c}^{(1)}$ (the space of the real analytic functions) without any assumption of regularity in $t$ as regards the coefficients $a_{i j}$; therefore, we can suppose that $s>1$ and that, according to the finite speed of propagation, $\varphi(x)$ and $\psi(x)$ have compact support, i.e. they belong to $\gamma_{0}^{(s)}$.

Equations of type (2) are studied in [2] by means of the Fourier-Laplace transform; now, let us see how we can obtain the result of Theorem 1 for the equation (2) using our method of approximation by strictly hyperbolic equations.

Let $h \in \mathbf{N}$. Define:

$$
\begin{gather*}
a_{h}(t)=a(t)+h^{-3} ; \\
\left\{\begin{array}{l}
\left(u_{m}\right)_{t t}=a_{m}(t)\left(u_{m}\right)_{x x} \\
\left(u_{m}\right)(x, 0)=\varphi(x) \\
\left(u_{m}\right)_{t}(x, 0)=\psi(x)
\end{array} \quad \text { on } \mathbf{R}_{x} \times[0, \mathrm{~T}]\right.  \tag{3}\\
\mathrm{E}_{h, m}(t)=a_{h}(t) \int_{\mathbf{R}}\left[\mathrm{D}_{x}^{h} u_{m}(x, t)\right]^{2} \mathrm{~d} x+\int_{\mathbf{R}}\left[\mathrm{D}_{x}^{h-1} \mathrm{D}_{t} u_{m}(x, t)\right]^{2} \mathrm{~d} x
\end{gather*}
$$

( $\mathrm{E}_{h, m}(t)$ is a sort of approximated energy of $\mathrm{D}_{x}^{h-1} u_{m}$ ).
From the fact that $\mathrm{D}_{x}^{k} u_{m}$ is a solution of (3) $\forall k \in \mathrm{~N}$ it follows easily that

$$
\begin{equation*}
\mathrm{E}_{h, m}^{\prime}(t) \leq \frac{\left|a_{h}^{\prime}(t)\right|}{a_{h}(t)} \mathrm{E}_{h, m}(t)+h^{-\sigma / 2}\left[\mathrm{E}_{h, m}(t)+\mathrm{E}_{h+1, m}(t)\right] \tag{4}
\end{equation*}
$$

if $h \leq m-1$, while

$$
\begin{equation*}
\mathrm{E}_{m, m}^{\prime}(t) \leq \frac{\left|\boldsymbol{a}_{m}^{\prime}(t)\right|}{a_{m}(t)} \mathrm{E}_{m, m}(t) \tag{5}
\end{equation*}
$$

Using Gronwall's lemma and the inequalities (4) (iterated $m-1$ times) and (5) we obtain

$$
\begin{equation*}
\mathrm{E}_{1, m}(t) \leq \sum_{i}^{m} \lambda_{h}(t) \mathrm{E}_{h, m}(0) \tag{6}
\end{equation*}
$$

where

$$
\lambda_{h}(t)=\exp \left\{\int_{0}^{t} \frac{\left|a_{h}^{\prime}(s)\right|}{a_{h}(s)} \mathrm{d} s\right\} \cdot t^{h-1} e^{t[(h-1)!]-(1+\sigma / 2)}
$$

From the fact that $a(t)^{1 / \sigma} \in \operatorname{BV}([0, T])$ it follows

$$
\begin{equation*}
\lambda_{h}(t) \leq e^{\mathrm{B} t}\left(t e^{\mathrm{B} t}\right)^{h-1} \cdot[(h-1)!]^{-(1+\sigma / 2)} \tag{7}
\end{equation*}
$$

where B is a positive constant depending only on $\left\|a(t)^{1 / \sigma}\right\|_{\mathrm{BV}}^{((0, T))}$ while, being $\varphi(x), \psi(x) \in \gamma_{0}^{(s)}$, we can estimate

$$
\begin{equation*}
\mathrm{E}_{h, m}(0) \leq \mathrm{CA}^{h-1}[(h-1)!]^{s} . \tag{8}
\end{equation*}
$$

Substituting (7) and (8) in (6) we get

$$
\begin{equation*}
\mathrm{E}_{1, m}(t) \leq \mathrm{C} e^{\mathrm{B} t} \sum_{0}^{m-1} \frac{\left(\mathrm{~A} t e^{\mathrm{B} t}\right)^{h}}{(h!)^{1+\sigma / 2-s}} \leq \mathrm{C} e^{\mathrm{B} t} \sum_{0}^{\infty} \frac{\left(\mathrm{A} t e^{\mathrm{B} t}\right)^{h}}{(h!)^{1+\sigma / 2-s}} \tag{9}
\end{equation*}
$$

and the last series converges to a number independent of $m$, this convergence being guaranteed by the fact that $s<1+\sigma / 2$.

Analogously, one can prove other estimates on the $\mathrm{E}_{h, m}(t)$, independent of $m$, of the type

$$
\begin{equation*}
\mathrm{E}_{h, m}(t) \leq \mathrm{C}(2 \mathrm{~A})^{h} e^{\mathrm{B} h t}(h!)^{s} \sum_{0}^{\infty} \frac{\left(2 \mathrm{~A} t e^{\mathrm{B}}\right)^{h}}{(h!)^{1+\sigma / 2-s}} \tag{10}
\end{equation*}
$$

By means of (9) and (10) we get that the sequence $u_{m}(x, t)$ is bounded in $\mathrm{C}^{1}\left([0, \mathrm{~T}] ; \gamma_{0}^{(s)}\right)$; therefore, there exists a subsequence $u_{m}$ that converges to a function $u(x, t) \in \mathrm{C}^{1}\left([0, \mathrm{~T}] ; \gamma_{0}^{(s)}\right)$ which is a solution of (2).

This method of approximated energies in $L^{2}$-norm of the solution and its derivatives, unlike the Fourier-Laplace transform, also works very well in the case in which the coefficients $a_{i j}$ depend on $x$; clearly, computations are much more complicated by the fact that the successive derivatives $\mathrm{D}_{x}^{\alpha} u$ of the solution $u$ don't solve the original equation (1), but a modified equation with the same principal part of (1) plus other terms depending on the derivatives of the coefficients and of the solution up to the order $|\alpha|-1$.

## 3. A Theorem for strictly hyperbolic systems

Using just the same techniques, we are also able to prove the following theorem, regarding strictly hyperbolic systems:

Theorem 2. Let us consider the system

$$
\left\{\begin{array}{l}
\mathrm{U}_{t}=\sum_{2}^{n} h_{h} \mathrm{~A}_{h}(x, t) \mathrm{U}_{x_{h}}+\mathrm{B}(x, t) \mathrm{U} \quad \text { on } \mathbf{R}_{x}^{n} \times[0, \mathrm{~T}]  \tag{11}\\
\mathrm{U}(x, 0)=\varphi(x)
\end{array}\right.
$$

where $\mathrm{A}_{h}, \mathrm{~B}$ are $\mathrm{N} \times \mathrm{N}$ matrices and $\varphi$ is an N -vector.

We suppose that:
i) problem (11) is strictly hyperbolic, i.e. the equation

$$
\operatorname{det}\left(\lambda \mathbf{I}-\sum_{1}^{n} \mathrm{~A}_{h}(x, t) \xi_{h}\right)=0
$$

has N real and distinct roots $\lambda=\lambda(x, t ; \xi)$;
ii) $\mathrm{A}_{h}(x, t) \in \mathrm{C}^{0, \alpha}\left([0, \mathrm{~T}] ; \gamma_{l o c}^{(s)}\right)$

$$
\mathrm{B}(x, t) \in \mathrm{L}^{1}\left([0, \mathrm{~T}] ; \gamma_{l o c}^{(s)}\right)
$$

(roughly speaking, the matrices $\mathrm{A}_{h}$ are hölder-continuous in $t$ and Gevrey in $x$ ).
Then, for any vector $\varphi(x) \in \gamma_{l o c}^{(s)}$ problem (11) has one and only one solution $\mathrm{U} \in \mathrm{C}\left([0, \mathrm{~T}] ; \gamma_{l o c}^{(s)}\right)$ provided that

$$
1 \leq s<\frac{1}{1-\alpha} .
$$

This result, for a scalar operator of order 2, has been proved by T. Nishitani in [4], using quite different techniques; however, the first result in this direction, regarding second order hyperbolic equations with time dependent coefficients, is due to F. Colombini, E. De Giorgi and S. Spagnolo (see [1]).

## References

[1] F. Colombini, E. De Giorgi and S. Spagnolo (1979) - Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps. «Ann. Scuola Norm. Sup. Pisa 》, 6, 511-559.
[2] F. Colombini, E. Jannelli and S. Spagnolo (1983) - Well-posedness in the Gevery Classes of the Cauchy Problem for a Non-Strictly Hyperbolic Equation with Coefficients depending on Time. To appear on "Ann. Scuola Norm. Sup. Pisa».
[3] E. Jannelli (1982) - Weakly hyperbolic equations of second order with coefficients real analytic in space variables. "Comm. in P.D.E.», 7, 537-558.
[4] T. Nishitani - Sur les équations hyperboliques à coefficients hölderiens en $t$ et de la classe de Gevrey en $x$. To appear

