ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

ENRICO JANNELLI

Weakly hyperbolic equations of second order well-posed in some Gevrey classes

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **75** (1983), n.1-2, p. 19–23. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1983_8_75_1-2_19_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Equazioni a derivate parziali. — Weakly hyperbolic equations of second order well-posed in some Gevrey classes. Nota (*) di Enrico Jannelli (**), presentata dal Corrisp. E. De Giorgi.

RIASSUNTO. — L'equazione $u_{tt} = \sum_{ij=1}^{n} (a_{ij}(x,t) u_{x_j})_{x_i}$ in condizioni di debole iperbolicità $\left(\sum_{ij=1}^{n} a_{ij}(x,t) \xi_i \xi_j \ge 0\right)$, è b n posta negli spazi di Gevrey $\gamma_{loc}^{(s)}$ con $1 \le s < 1 + \frac{\sigma}{2}$, purché a_{ij} sia di Gevrey in x di ordine s e risulti

$$\left[\sum_{ij=1}^{n} a_{ij}(x, t) \; \xi_{i} \; \xi_{j}\right]^{1/\sigma} \in BV([0, T] \; ; \; L_{loc}^{\infty})$$

1. Introduction

In this work we shall deal with the following equation:

(1)
$$\begin{cases} u_{tt} = \sum_{ij=1}^{n} (a_{ij}(x, t) u_{x_j})_{x_i} & \text{on } \mathbb{R}_x^n \times [0, T] \\ u(x, 0) = \varphi(x) \\ u_t(x, 0) = \psi(x). \end{cases}$$

The matrix a_{ij} is a real symmetric matrix having the following properties:

i)
$$\sum_{ij=1}^{n} a_{ij}(x, t) \xi_{i} \xi_{j} \geq 0$$
 $\forall t \in [0, T], \forall (x, \xi) \in \mathbb{R}^{2n};$

ii) There exists a number $\sigma \geq 1$ such that, $\forall K$ compact subset of \mathbf{R}^n_x , $\forall \xi \in \mathbf{R}^n$

$$\left[\sum_{j=1}^{n} a_{ij}\left(x\,,\,t\right)\,\xi_{i}\,\xi_{j}\right]^{1/\sigma}\in\;\mathrm{B}\;\mathrm{V}\left(\left[0\,,\,\mathrm{T}\right];\;\mathrm{L}^{\infty}\left(\mathrm{K}\right)\right);$$

- (*) Pervenuta all'Accademia il 21 luglio 1983.
- (**) Scuola Normale Superiore. Pisa.

moreover

$$\sup_{\left|\xi\right|=1}\left\|\left[\sum_{ij=1}^{n}a_{ij}\left(x\,,\,t\right)\,\xi_{i}\,\xi_{j}\right]^{1/\sigma}\right\|_{\mathrm{BV}\,\left(\left(0\,,\,\mathrm{T}\right)\,;\,\mathrm{L}^{\infty}\left(\mathrm{K}\right)\right)}==\mathrm{M}_{\mathrm{K}}<+\infty\;\;;$$

iii) For any K compact subset of \mathbb{R}^n_x there exist some positive constants Λ_K , Λ_K such that

$$|D_x^{\alpha} a_{ij}(x,t)| \leq \Lambda_K A_K^{|\alpha|} |\alpha|^{|s|\alpha|} \forall (x,t) \in K \times [0,T], \forall \alpha \in \mathbb{N}^n$$

for a fixed number $s \ge 1$ (i.e. the matrix a_{ij} belongs to the Gevrey class $\gamma_{loc}^{(s)}$ in x, uniformly with respect to t).

From these hypotheses we have obtained the following

THEOREM 1. Let $\varphi(x)$, $\psi(x) \in \gamma_{loc}^{(s)}$. Then problem (1) has one and only one solution $u \in C^1([0,T]; \gamma_{loc}^{(s)})$ provided that

$$1 \le s < 1 + \frac{\sigma}{2}$$

Remark 1. If $a_{ij}(x,t) = a_{ij}(t)$, the result of Theorem 1 is contained in [2], where a class of counter-examples shows that this result, in a certain sense, cannot be improved.

In connection with Theorem 1, for coefficients hölder continuous in t, see also [4].

2. Sketch of the proof

The idea of the proof is to approximate problem (1) by means of a family of strictly hyperbolic problems with sufficiently smooth coefficients and to show that the corresponding solutions are bounded in $C^1([0,T]; \gamma_{loc}^{(s)})$, in order to obtain a sequence converging in $C^1([0,T]; \gamma_{loc}^{(s)})$ to a solution u(x,t) of (1). After this, the uniqueness of the solution of (1) is obtained by a duality method.

In order to illustrate the situation, let us consider the simplest case of (1), i.e. the equation

(2)
$$u_{tt} = a(t) u_{xx} \qquad \text{on } \mathbf{R}_{x} \times [0, T]$$
$$u(x, 0) = \varphi(x)$$
$$u_{t}(x, 0) = \psi(x)$$

where $a(t) \ge 0$ and $a(t)^{1/\sigma} \in BV([0, T])$; moreover, as a further simplification, we suppose $a(t) \in C^1([0, T])$ (this last hypothesis is removable).

From [3] it is known that problem (1) is well-posed in $\gamma_{loc}^{(1)}$ (the space of the real analytic functions) without any assumption of regularity in t as regards the coefficients a_{ij} ; therefore, we can suppose that s > 1 and that, according to the finite speed of propagation, $\varphi(x)$ and $\psi(x)$ have compact support, i.e. they belong to $\gamma_0^{(s)}$.

Equations of type (2) are studied in [2] by means of the Fourier-Laplace transform; now, let us see how we can obtain the result of Theorem 1 for the equation (2) using our method of approximation by strictly hyperbolic equations.

Let $h \in \mathbb{N}$. Define:

(3)
$$a_{h}(t) = a(t) + h^{-\sigma};$$

$$\begin{cases} (u_{m})_{tt} = a_{m}(t) (u_{m})_{xx} & \text{on } \mathbb{R}_{x} \times [0, T] \\ (u_{m})(x, 0) = \varphi(x) \\ (u_{m})_{t}(x, 0) = \psi(x) \end{cases}$$

$$E_{h,m}(t) = a_{h}(t) \int_{\mathbb{R}} [D_{x}^{h} u_{m}(x, t)]^{2} dx + \int_{\mathbb{R}} [D_{x}^{h-1} D_{t} u_{m}(x, t)]^{2} dx$$

 $(E_{h,m}(t))$ is a sort of approximated energy of $D_x^{h-1}u_m$.

From the fact that $D_x^k u_m$ is a solution of (3) $\forall k \in \mathbb{N}$ it follows easily that

(4)
$$\mathbf{E}'_{h,m}(t) \leq \frac{|a'_{h}(t)|}{a_{h}(t)} \mathbf{E}_{h,m}(t) + h^{-\sigma/2} \left[\mathbf{E}_{h,m}(t) + \mathbf{E}_{h+1,m}(t) \right]$$

if $h \le m - 1$, while

(5)
$$\mathrm{E}_{m,m}^{'}(t) \leq \frac{\mid a_{m}^{'}(t)\mid}{a_{m}(t)} \, \mathrm{E}_{m,m}(t).$$

Using Gronwall's lemma and the inequalities (4) (iterated m-1 times) and (5) we obtain

(6)
$$E_{1,m}(t) \leq \sum_{1}^{m} \lambda_{h}(t) E_{h,m}(0)$$

where

$$\lambda_h(t) = \exp \left\{ \int_0^t \frac{|a_h'(s)|}{a_h(s)} ds \right\} \cdot t^{h-1} e^{-t} [(h-1)!]^{-(1+\sigma/2)}.$$

From the fact that $a(t)^{1/\sigma} \in BV([0, T])$ it follows

(7)
$$\lambda_h(t) \leq e^{Bt} (te^{Bt})^{h-1} \cdot [(h-1)!]^{-(1+\sigma/2)}$$

where B is a positive constant depending only on $||a(t)^{1/\sigma}||_{BV((0,T))}$ while, being $\varphi(x)$, $\psi(x) \in \gamma_0^{(s)}$, we can estimate

(8)
$$E_{h,m}(0) \leq CA^{h-1} [(h-1)!]^{s}.$$

Substituting (7) and (8) in (6) we get

(9)
$$E_{1,m}(t) \le Ce^{Bt} \sum_{0}^{m-1} \frac{(Ate^{Bt})^h}{(h!)^{1+\sigma/2-s}} \le Ce^{Bt} \sum_{0}^{\infty} \frac{(Ate^{Bt})^h}{(h!)^{1+\sigma/2-s}}$$

and the last series converges to a number independent of m, this convergence being guaranteed by the fact that $s < 1 + \sigma/2$.

Analogously, one can prove other estimates on the $E_{h,m}(t)$, independent of m, of the type

(10)
$$E_{h,m}(t) \leq C (2 A)^{h} e^{Bht} (h!)^{s} \sum_{0}^{\infty} \frac{(2 A t e^{Bt})^{h}}{(h!)^{1+\sigma/2-s}}.$$

By means of (9) and (10) we get that the sequence $u_m(x, t)$ is bounded in $C^1([0, T]; \gamma_0^{(s)})$; therefore, there exists a subsequence u_m that converges to a function $u(x, t) \in C^1([0, T]; \gamma_0^{(s)})$ which is a solution of (2).

This method of approximated energies in L²-norm of the solution and its derivatives, unlike the Fourier-Laplace transform, also works very well in the case in which the coefficients a_{ij} depend on x; clearly, computations are much more complicated by the fact that the successive derivatives $D_x^{\alpha}u$ of the solution u don't solve the original equation (1), but a modified equation with the same principal part of (1) plus other terms depending on the derivatives of the coefficients and of the solution up to the order $|\alpha| - 1$.

3. A Theorem for strictly hyperbolic systems

Using just the same techniques, we are also able to prove the following theorem, regarding strictly hyperbolic systems:

THEOREM 2. Let us consider the system

(11)
$$\begin{cases} \mathbf{U}_{t} = \sum_{1}^{n} \mathbf{A}_{h}(x, t) \, \mathbf{U}_{x_{h}} + \mathbf{B}(x, t) \, \mathbf{U} & \text{on } \mathbf{R}_{x}^{n} \times [0, T] \\ \mathbf{U}(x, 0) = \varphi(x) \end{cases}$$

where A_h , B are $N \times N$ matrices and φ is an N-vector.

We suppose that:

i) problem (11) is strictly hyperbolic, i.e. the equation

$$\det \left(\lambda \mathbf{I} - \sum_{1}^{n} \mathbf{A}_{h} (x, t) \xi_{h}\right) = 0$$

has N real and distinct roots $\lambda = \lambda(x, t; \xi)$;

ii)
$$A_h(x, t) \in C^{0,\alpha}([0, T]; \gamma_{loc}^{(s)!})$$

$$B(x, t) \in L^{1}([0, T]; \gamma_{loc}^{(s)})$$

(roughly speaking, the matrices A_h are hölder-continuous in t and Gevrey in x). Then, for any vector $\varphi(x) \in \gamma_{loc}^{(s)}$ problem (11) has one and only one solution $U \in C([0, T]; \gamma_{loc}^{(s)})$ provided that

$$1 \leq s < \frac{1}{1-\alpha}$$
.

This result, for a scalar operator of order 2, has been proved by T. Nishitani in [4], using quite different techniques; however, the first result in this direction, regarding second order hyperbolic equations with time dependent coefficients, is due to F. Colombini, E. De Giorgi and S. Spagnolo (see [1]).

REFERENCES

- [1] F. COLOMBINI, E. DE GIORGI and S. SPAGNOLO (1979) Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps. « Ann. Scuola Norm. Sup. Pisa », 6, 511-559.
- [2] F. COLOMBINI, E. JANNELLI and S. SPAGNOLO (1983) Well-posedness in the Gevrey Classes of the Cauchy Problem for a Non-Strictly Hyperbolic Equation with Coefficients depending on Time. To appear on «Ann. Scuola Norm. Sup. Pisa».
- [3] E. Jannelli (1982) Weakly hyperbolic equations of second order with coefficients real analytic in space variables. « Comm. in P.D.E. », 7, 537-558.
- [4] T. NISHITANI Sur les équations hyperboliques à coefficients hölderiens en t et de la classe de Gevrey en x. To appear