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Fisica matematica. — Uniqueness theorems for steady, compres-
sible, heat-conducting fluids: bounded domains ®). Nota I di Maria-
ROSARIA PapuLa ¥, presentata ***) dal Socio D. GRAFFIL

RiassunTOo. — Si fornisce un teorema di unicitd per moti stazionari regolari di
fluidi compressibili, viscosi, termicamente conduttori, svolgentisi in regioni limitate dello
spazio fisico.

§ 1. During the last twenty years, the we'l-posedness theory for viscous
compressible fluids has received remarkable contributions from the early papers
of D. Graffi and J. Serrin on uniqueness [1, 2, 3] to the more recent works of
A. Matsumura and T. Nishida [4, 5] on global (in time) existence (cf., also,
[8] and the literature cited therein). All of these results concern the equations
governing the unsteady motions of thermally conducting fluids. Moreover,
the present writer has recently proved existence and uniqueness theorems
for steady motions of barotropic, viscous fluids in bounded domains [10]. This
simplified scheme has been adopted in order not to obscure the underlying
ideas and to present the technical tools as simply as possible. Obviously, the
heat-conducting model may represent a more realistic and more interesting
situation from the physical point of view (e.g., the Benard problem without
Boussinesq approximation [6]).

In this note, employing and generalizing the methods introduced in [7],
we give a contribution to solving the above problem for thermally conducting
fluids. Precisely, we prove a uniqueness theorem for smooth solutions to the
equations governing the motion of a viscous, compressible, ideal and polytropic
fluid occurring in a bounded domain Q, whose boundary is rigid and of infinite
thermal conductivity (velocity and temperature ascribed). The smoothness
assumptions on solutions are the usual ones [1, 2] and include the existence of
a strictly positive lower bound for both temperature and density. We notice,
further, that our constitutive hypotheses are by no means restrictive and that
they are made here only in order to simplify the proof of the theorem and to
state the sufficient conditions for uniqueness in terms of well-suited nondi-
mensional parameters.

The plane of the work is the following. In section 2, after recalling a pre-
liminary lemma, we write the equations of motion in a suitable dimension’ess
form and define the regularity class .# where the uniqueness is proved. Moreover,
we state the uniqueness result and clarify the ‘‘smallness” assumptions we

(*) Work performed under the auspices of G.N.F.M. of the Italian C.N.R.
(**) Indirizzo dell’autore: Istituto di Matematica « R. Caccioppoli », via Mezzo-
cannone 8, 80134 Napoli.
(**%) Nella seduta del 23 giugno 1983.
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make on Mach, Prandtl and Reynolds numbers and on the ratio of the maxi-
mum of Vp and the minimum of the absolute temperature associated to the
motions. It is easy to convince oneself that a more detailed analysis would allow
us to deduce the well known uniqueness results for classical incompressible
flows [9] in the limit of “ vanishing compressibility ”’ [14]. Finally, in section 3
we prove the uniqueness theorem.

We end by noticing that, though the class .# is non empty, as shown in
section 2, it would be desirable to provide existence in it and this will be the
object of future research.

§2. We commence this section by recalling a result which is of basic impor-
tance in this note and whose proof is given in [13] ®.

Levma 1. Let Qe C. For any de L (Q) such that J & dx =0, there
Q
exists at least ome function @€ Wg* (ie, 3,9cL*(Q), ¢=0 on 03Q,
9, == 9dx;, (x;) rectangular coordinates) such that '

livel<cldls

where | - |, denotes the usual 1.>-norm and ¢ denotes a positive constant depending
only on the regularity of 9Q.

As we mentioned in section 1, we shall be concerned with polytropic fluids,
i.e., fluids for which the internal specific energy ¢ is proportional to the absolute
temperature 6, the proportionality constant cy being the specific heat at constant
volume [11]. Moreover, the ideal gas assumption implies 5 = R* 58, where
2 is the pressure, B the density and R the gas constant. However, as we have
alreac&y said, the more general case e==¢ (p , 0), p==5(p,0) presents no
conceptual difficulty and can be handled by the same methods, provided the
constitutive relations are sufficiently smooth functions of their arguments (cf.
[1] pp. 103-104). :

As is well known, for a polytropic ideal fluid the nondimensiqnal analysis
is allowed [15]. In particular, we have the following dimensionless equations
governing the steady motions of a compressible, viscous, polytropic ideal gas

' Rpo - Vo—A0—(9—1)VV - v==—(R/M?)Vp+ Rof
(2  (ev/e) PrRpov-VO — A, 0 =—(R%c,) PrRp V- o+Pr[(#—1) (V- 0p +
(V.(Pv)zo, + 2D : D]

(1) For a given function space V, we set V= [V]5..
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with p =06 and D == (Vo + Vo')/2. In (2) ¢, v, 6§ represent the (dimension-
less) density, velocity and temperature, respectively, while f is the (dimensionless)
force per unit mass. Moreover, denoting by ¢*, »*, 6* comparison dimensional
quantities, for the above fields and by d a comparison length, we set

M2 = (PR 6" 5 R=de"[0"|Jus
Pr =c,uly ; $=(+ 2u)u,

where ., A are the Lame coefficients and y is the thermal conductivity. The
nondimensional numbers M, R,Pr, 9 are usually called Mach, Reynolds,
Prandtl and viscosity numbers, respectively [12]. Moreover, the Clausius-Duhem
inequality implies [12]: & > 4/3.

To system (2) we append the boundary conditions

v == 9
3) % laa %
. 6 ]39 = 6* b
here v, 0, are regular functions on 9Q.
Together with (3) we shall suppose that the total mass is ascribed, i.e.,
(4) O<fpdx:ﬂ<oo.
Q

In the sequel, problem (2)~(3)-(4) will be denote by #. We shall consider,
for &, only classical solutions in the following sense

I={(p,v,00eCr(Q)im,<p;m<0;max{|V v[,|Ve|}<h;
max{|V-wvlfp,p,v,0,|V0],|Vo|} <k}.

Here, C;(Q) denotes the space of functions having first derivatives piecewise
continuous and bounded. In this way, we may take into account discontinuity
waves but not shock waves. This latter fact has an exact analogy with the non-
stationary case [1] in which the same assumption is made on solutions for which
uniqueness is proved.

We put

a;=8[y3 (®—1)+ c(1 + 2REV)]/7;
ay=2"M2E[3(%— 1) + ¢ (1 + 2RE* v)"]/49 Rms ;
a;=vk[M™ (V?{ + 8 kkyv[Tme)] + 8%[7
a,={2"E* k4O M mi} 5
by = (R* B2 v?jc,) + 8v (cy + R*v) B [Tcpymg 5
by=k(39—1);
by=RE*v (cy + Y3 R¥e, + 20 [J3 (8 —1) + 2] +

+ 8M2E2 (cy + R*v) [13(8 + 1) + ¢ (1 + 2RE#V)]/7 ¢, mo;
Y == (bv + sup | ©* | }/mo,
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where, b=max |f| and v=—max f w? dx /f (Vw)dx. We are, now, in
Q w2 o
o 9 Q

position to state the main theorem.

UNIQUENESS THEOREM. — Assume Qe C',feC® (Q) and let numbers
A,y gy by, by, v, Ry Ry, M, Pr verify the following relations
(y M?/mg) < min {1/8¢, 1/64a,},
R < min {1/6F v, 1/[a; + 8 (2a, + as) (2b, + b5)]},
Pr < min {1/2Rb,, 1/8b5} ,
v (kyfme) < 1/6 (az + ay) .

)

Then, there exists at most one solution (p, v, 0)e S to problem A.

Remark 1. The regularity class .# where uniqueness is proved can be fairly
enlarged. In fact, on the one hand, the local bounds on the velocity field (i.e.,

|v|,| Vo | < k) can be replaced by the weaker assumption [ [ Vo 2dx < k;
Q
‘ energy identity ”’, by direct calculation one

<

on the other hand, employing the

shows that f | Vo [2dx is estimated in terms of the L2-norm of pf and of ¢6.
o

Thus, the assumption on the velocity is a consequence of those made on p and

on 6.

Remark 2. 1t is easy to verify that (5) are self-consistent.

Remark 3. 1t is not difficult to find, in the limit of vanishing compressi-
bility (M — 0, k, — 0), the usual relations ensuring uniqueness for incompres-
sible viscous, steady motions [9, 14].

3. Let (f=p4¢, 6==v+u, 0=0-0) and (p, v,6) be two
solutions to the boundary value problem # in the class #. Their difference
(¢',u,0) will, then, verify the following system

| Rpo-VutR[oute'(v-+w)]- Vo —Au—(9—1) VY- u=RM*Vp'+Rpf
RPr (cv/c,) {$9- VO’ +[pu+p'6]- VO} Ay’ = —RPr(R*/c,) (pV - #+2'V ")

4+ Pr(3 + 1) [(V-2f + 2V-0V-u] + 2Pr[D’ : D’ + 2D : D]
6) < V-[pute 3]=0

u o =0 =
fp'dx:O
L Q

where p' == 0’ + $6' and D' = [Vu : Va']/2.
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Let us multiply (6),,, by u and 9', respectively, and integrate over Q to
obtain

|Aulz+ (3 —1)|V - u|§:(R/M2)fﬂp’V -udy + F,
() a

| AB' |3 =TF,,

where use has been made of (6)s,4,5. We set, also,

M

Q

Fy R f@e'V'udx+Rf[p'f'u+ pu-Vu-v+ o' v-Vu-v] dx
o

RPr
cpl R*"Q

___ RPr
o ==
cplev

(pV-u + p'V-v) 6 dx 4

f(@u + ¢’ v)-V0O' 0 dx —
Q

—}—Pr[[(&—l) (V- up + 2D': D] 60 dx -+

—I—2Prf[(9—1)V-vV-u+2D:D’]B’dx.
Q

To deduce an equation for ¢/, let us pick on the left hand side of (6); the term
— (R/M2) v (6¢’) and multiply this equation by ¢ € Wo*, it results

® R [0 Vg ar—— ®RM) [ 50V gax—R | o'sogds +
Q Q Q

—l—J Vu:Vgodx—l—(%—l)fV-uV-(pdx—RfgSi;-Vu'q)dx—}—
o Q

Q

—|—Rf(§u—{—p'v)-V(p-vdx.
Q

Now, we let in (8) V-¢ varying in L?(Q) and | V-@ |;==1; by lemma 1 we
deduce

O (RM)] 0’ |y < (R/ME) | 60/ 12—RJ Fpol dvt (9 —1)|Voulo+

Q

+elVulp+ Re|gduls+ Rel[o|(plul+e (vl

To obtain sufficient conditions for uniqueness to hold we employ, now, pro-
perties of solutions in the class #. From (9), by using Schwarz and Poincarg
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inequalities, we thus have

(R/M2) [mg — M2 c(by + )] |o' |2 < Mg/ | VO |y +
+c(1 4+ 2RE2V) | Vuly+ (3 —1) | V-ul,.
Hypothesis (5), implies then

3 vk 81\/[
(10) 10l < g | VO o oo (ﬁ—l)lvulz—l- ‘

— (1+2RE) [Vl

We study, now, equations (7). To this end, employing (6);, Schwarz and Poincaré
inequalities, we notice that the following relations hold true

[ r— f 0 (p'u-Vlog o + 3 [(V- /¢) -+ (- Vele)] (¢} dx <
) Q

Skkllp' |2(V|V“ ls + IPllz)

Rk
Fy<RG+E) e 3| Vul;+ RE2Y | Vu |3 + - | VO 2|V u |,

(1) Mz2jy
RE2

L‘,,/c,,

FQ:;Pr( +4k2>v|Vu|2lvef|2+Prv(R/R*+2k(3 1))><

c,,—I—R v

Cp

XlV-uIleO’Iz+RPrk2< )Ip || VO'lo+RPr 22 R* |V 3/c,

+Pr2k|Vu i +Prk(®—1)|V-ulz.

Substituting estimate (11) in (7), we deduce

kkyv

(]| Va |z < (Rkk/M2) | of |§+R[ ]lp |2 | Vae]y 4

i V3 Rkv

+ RvE | Vu 3 | VO |z | Vi o

r

» + R :
+ RPrk? J‘c_ [0 1s | V' s + (RPr B2 RY/c,) | Vo' |3 -

»
L PRGBS —1) | Vala
where we used the inequality ® | V.2 |2 < 3 |Vu |2

(2) Obviously, more accurate estimates can be obtained if we retain, on the left
hand side of (12),, the term (& —1)|v -u];.
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In these relations we employ (12) to obtain

(1 —RvE) | Vuls <a,| VO [5+ (kfme) | Vu |3 +

—|-R{ ;”m’: [kklvM—2+vb+k2]+v3“kvM—2}|ve lp | Vae |y +-
8my ' M2 2 -
(13) A T (B M7 b+ B) [13 (8 — 1) ¢(14 2REN)] | Va3

[1— (RPr k2 v2 R¥/c,)] | VO[3 < Prb, | Va|y | VO' |, + Prib, | Va |2 +

+ [g RPr £ v (c, + R* v)/c, meJ | Ve’ |3.

Since conditions (5) are assumed to hold, from (13) we deduce

\ (i_ M az) | Vu |2 < Rag | VO’ |, | Vae |, + Ra, | VO 2
(14) ! 6 "o 1 Mo —_ 2 2 4 2
| (1—RPrby) | V0|3 <Prb,| Vul|s+ Prb,| Val|,| VO',.

Employing again (5) into (14) and adding (14), to (14), times % (>0) we have
1 /

(15) (7 —n Pr bz) | Vu lg + (_2‘—‘ Ra4) | V'R < (Rag +Pr by) | Vu |, | VO'|,.

Applying, now, the Cauchy inequality in (15) we finally deduce

1 P R
(16) |3 e sy — S| rvur+

R b 2
+ [—2——7(2(14—!—413)—7)&’73] Ve 2<0.

Choosing v=8R (24, + a;) and employing (5) in (16), we obtain Vu =0
V6'==0 and consequently p'=0. C.V.D.
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