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Geometria. — Some results on homotopy theory of modules. Nota 
di H e Zheng-X u , presentata <*> dal Socio E. Martinelli.

R iassunto. — Seguendo le idee presentate nei lavori [1] e [2] si studiano le proprietà 
dei gruppi di z-omotopia per moduli ed omomorfismi di moduli.

B. Eckmann and P. Hilton introduced and studied various homotopy groups 
of modules and of pairs (1) in [1] and [2]. They showed that many aspects of 
the homotopy theory of modules are similar to those based on topological spaces. 
In  this note, some new results are presented. In section 1, the Ext groups of 
pairs are defined and general properties of pairs are studied. In  section 2, we 
will show an exact sequence. Finally, in section 3, we will deal with fibre maps 
and give some “ natural ” homomorphisms of homotopy groups.

We will deal only with the f-homotopy; the ^-homotopy can be presented 
dually. We will use implicitly the definitions given in [3, Ch. 13].

1. Let i =  (i1, i2) e Horn (a , a'), where a : Ax Ag and a ' : Ai Ag, 
define the quotient pair along i to be the pair i =  a '/a  : A^/Im i1 —>• A^/Im i2, 
where a '/a  is induced by a'. If i is an inclusion of a in a, then we define the 
suspension of the pair a, denoted by sol , to be a /a  (along i) (2). Note that a 
suspension of the pair ol is also a suspension of the map <j> =  a defined in [3, 
p. 134], but the converse is not true. For any map cj) : a —>• (3, we have an exten­
sion map <j> : oc ->• [3 which, in turn induces a suspension map Sc|> : sa -> s(3. 
In  [3, Ch. 13], tc (a , (3) is defined; we denote rcn (a , (3) for n (sn a , (3). Any 
map cj) : a —* a' induces homomorphisms of groups

4* : nn (</ , (i) ^  Hn (a , |3) and <i>* : (£ , a ) -»• 7rn (p , oc').

Let us denote by p  : (3-* (3/[3 =  s(3 the projection map, and we say that 
a map a->s(3 is strongly z-null homotopic, if it can factor through (3:

Two maps a -> $(3 are said to be strongly /-homotopic if their difference is 
strongly i-null homotopic. We define Ext group of the pairs a , (3, denoted by

(*) Nella seduta del 23 giugno 1983.
(1) A homomorphism of modules is said to be a pair, if it is considered as an object 

in the category of homomorphisms of modules. They are denoted by a , P , • • •.
(2) We denote by a , p , • • • for some injective pairs containing a , P , • • • respectively.

a *(3
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Ext ( a , p), to be the group of strongly f-homotopy classes of maps a —>* sfi. 
Also define Extn+1 (a , p) to be Ext (a , snft). Clearly, a map § : p ->• p' induces 
a homomorphisms <|># : Extn (a , p) -> Extn(a , (S'). Let co =? 0 : 0 - ^ A  and 
let in : Sw_1 B -> S^-1 B be the inclusion. We put Extw+1 (a ,. B) — Ext (a , in) 
and Extn+1 (A , p) =  Ext (co , s11 (3). It is easy to prove that Extn+1 (co , B) =  
— Ext (A , O  =  Ext (co , O  =  E x f+1 (A , B).

We say that a map § : a —► (3 is an f-homotopy equivalence if there is a 
map : (3 a such that c^i l a and lp, in this case we write a p.

Note that the f-homotopy type of sol depends only on that of a.

Theorem 1.1. The following four statements about <|> : (3 —► p' are equivalent:

Ì) <1> : P -*(*' ;
ii) <j>* : n (a , p) ^  n (a , p') , for any a ;

iii) <j)* : 7c ( p ' , a) ^  tc (p , a) , for any a ;

iv) <j>+ : Ext (a , (3) ^  Ext (a , f t) , for any a .

As a corollary, a pair p is injective if and only if (3 ~$0.
If a : Ax —* A2, a' : A[ -> A2 are two pairs, their sum a © a ' is then a 

pair Ax © A  ̂-> A2 © A2.

Proposition 1.2. For any a , a© [3, ft :

i) 7Cn (a © a' , ft) ^  Tcn (a , ft) © tc„ (a' , ft) ;

ii) 7Ù„(a , (3 © (3') ^  7Tw(a , (3) © 7tn (a , (3') ;

iii) Ext** (a © a', ft) g* Extn (a , ft) © Extn (a', (3) ;

1 iv) Extn (a , p © P') =  Extn (a , ft) © Extn (a , ft) .

Theorem 1.3. c|> : a -> [3 w an i-homotopy equivalence if and only if there 
exist two infective pairs u and u! so that <|> can be factored into:

( * ) a ------  —>■ u © a ■— ——>- ur © (3--- -— >■ p

where i and p are the obvious maps, and <j/ «  an isomorphism of pairs.

Proof. We need prove only the necessity. Let cj> be an z-homotopy equi­
valence. Let ix =  (/J , /f) : a - ^ a  be the inclusion, let X : a a © p be defined 
by X1 (ax) =  (ti (ax) , (j)1 («i)), X2 («2) =  (*? (a2) , <j>2 (a2))> for ^ e  Ax , a2e A2.

Then X is also an /-homotopy equivalence. Let [x : a © p a be its 
t-homotopy inverse, i.e., (xX— l a 0 : a -* a, and X is clearly an inclusion, 
so there is a map 6 : a © p —>• a such that 0X =  jxX — l a .
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Let u =  (oc ® p)/a : U x =  (Ai ® B ^ /Im  X1 ->  U 2 —  (A2 © B2)/Im  X2 be the 
quotient pair. We have the exact sequences

o > A ^  s  A  / T \ t1  ̂ u > 0> - r l .1  7̂ -LJ1 7" U j

0 -----> A2 -> A2 © B2 T 2  T T------- >- U2 — -► 0

where t 1 and t 2 are the projection maps.
By the proof of [3, Th. 13.17], A* © Bx ^  Ih  © A2, A2 © B2 ^  U2 © A2 

and, if v1 : U* ->•_ Ai © B , v2 : U2 ->• A2 © B are inclusion maps, then 
Ia^ B ì — X1 01 =  v1 t 1 and 1a2@b2 — X2 02 =  v2 t 2. But, (a © p) X1 =  X2 a 
and OC01 =  02 (oc © p), which implies (a © p) v1 t 1 =  v2 t 2 (oc © p) =s v2 u t 1, 
hence (a © p)v1=^v2w, i.e. v =  (vh v2) is a map of pairs u —* oc © p.

Now, let cj/ : u © oc -> a © p be defined by v and X. Then <]>' is an isomor­
phism and <j> is represented by ( *), with ur —  a. It remains to show that u is 
an injective pair. For this, we observe that i —  (cj/)-1 X is an i-homotopy equi­
valence. By Proposition 1.2 and Theorem 1.1, we deduce tc (y ,^ )= * 0 , for 
any pair y, therefore u is injective.

2. For a pair oc and a module B, we put 7uw (fc , B) =  7un (a , 'co), where 
co : 0 —► B.

We have Hn (A , co) =  (in , B) =  nn (in , co) =  nn (A , B ) , where 
in : S^-1 A S’4-1 A .

Let a : ->• A2 be any pair, we denote A0 for Ker oc and A3 for Coker oc.
If  cj> = :  (cj)1 , cf>2 )  e  Horn (oc , p), then c j /  induces a map <j>° : A0 B0 and cj)2 indu­
ces a map cj)3 : A3 —>• B3 .

Note that Ker (s o c )  = :  S (Ker a )  and Coker (s o c )  =  S (Coker a )  and (S<j>)° — 
— S(i>0 : SA0 -* SB0 , (ScJ>)3 — Sci)3 : SA3 -* SB3.

Theorem 2.1. I f  A 0 —  Ker % is injective, then we have an exact sequence:

--------------► *„(<* , B) . -* ^ ( A ,  , B) un(Ax. B) — ^ ( a  , B)

• • • -> TTx (Ajj , B) ------    ̂7t! (Aj , B) .

Proof. Firstly, we must define/* and 3*.
Let [x] e Trn (a , p) =  tc (sn a , o>), x —  (x1 , x2) : sn a -* w, where x1 =  0 :  

SM Aa 0 and x2 : Sn\  -» B. Define j*  [x] =  [x2]. As for the definition of 3#, 
let us construct $”- 1 a and sna. for n >  1, assuming that Ker (̂ w~1 a) is injective. 
Let % : S'4-1 Aj -> S » ^ ,  let H =  { (^ (ax) , — ( / -1 a) (a,)) 5 «i 6 Sn-1A, } c
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composition

S"-1 A2 C_* 0  Sw_1 Ag-----^ (S ^ A i ® S ^ A ^ /H ^ X C -^ x

and take sn~x a : S%-1Ai X to be the composition

S ^ A i ^ S ^ A x  0  S ^ 1 A2----->(WZTK1 © S ^ 1 A2)/H =  X c_> x  .

Then il is obviously an inclusion of SW-1A2 in X and (^~ 1a) il —  ^ ( ^ _1a), so 
we can take S^^Ag — X. In this way, since Ker (^ -1 a) is injective, ^ -1 a is 
an injective pair, in —  (i I , i^) : s71-1 a s71*1 a is an inclusion, and Ker sn a — 0 
is injective for sn a =  sn~1 a/s^-1 a. For any n >  2 , s'17*1 a is obviously a mono­
morphism of modules.

Now we define 3*. Let [z] e (A j, B) ==: 7u (in , co) (w >  2) be represented 
by (s:1 , z2) : —* co. In  the diagram:

S«-] A2 1-g_  S ^ A i 0

Y   Y
-----------  ĉ -1 o r ____
S»-1 A, ■«----------- Sn_1Ai-----0----->

&

sn~1 a is monomorphism of modules, Sw-1Ai is injective, so there is a 
map 6 : Sn_1A2 such that 0 (^~ 1a) =? 1 s ~̂ r Al • Let. x1 ^  z1 0,
x2=;z2 Oil, then x2 (s7l~1 a) =  z2 Qil (s71-1 a) — #2 0 (sn-1 a) il =  z2 il —  co#1 =  co#1, 
hence x =  (oc1, x2) e Horn (sn_1 a , co). Define 3* ([#]) =  [#]. The maps ;* 
and 3* are well-defined and they are homomorphisms of groups. We can verify 
directly that a*;* =  0, 3* a* =  0 and ;*  —  0. It remains to show that
Ker a* £  Im ;*  , Ker §*£ Im a* and K er;* c  Im  S>*. Let [y ] e Ker a* be 
represented by y : S nA2-*B. Then, there is a map X :S WA1-^B  such that 
\ i l + 1  =^y(sn a). Then (0 , y  — X0 il+1) e  Horn (sn a , co), (0 : S%A2 -»• SnAi is such 
that 0 (?^c) =  1 ^  ) and ;* ([0 , y  —  X0#+i]) — [y], hence Ker a* c  Im ;*.

Let [z] e Ker 9*,. where z  =  (#x — 0 , z2) : il co. Then, there exists a 
map (0 , [j l) : sW~1 a ->• co, such that \dl =  z2 Qil. We get (0 , z2 0 — [x) e 
e Horn ( i l , co) and a* ([0 , z2 0 — [x]) =  [#], hence Ker 3* c  Im  a*.

Lastly, let [#] e Ker;*, with x =  (x1 — 0 yx2) : sn a -* co. Then, there 
exists a map 7 ] :S n A2 -^ B  such that r \ i l+ i~ x 2. Then (0 ,Y ](iwa ) ) e  
e Horn (£+1, co) and 3* ([0 , y) ($»a)]) =  [#], so K e r ;#£  Im 3*. The proof
is thus complete.

Proposition 2.2. For any a : Ax -»• A*, let A3 =  Coker a =  A2/a A 1.
£s isomorphism f  : (a , B) ^  7tn (A3, B). I f  i> : ot ctr is a map, then
/(J)* =  (cj)3)*/, where cj>3 : A3 A3.
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Proof. Let x — (x1, x2) : sn ol —* co, x1 =  0 , x2 (sn a) =  o  x1 — 0, so #2 
induces a map : (Sn A2)/Im sn a. B. But (Sn A2)/Im  ^  a =  Sn As , so 
we put /([# ]) ==: [#3].

A straightforward proof shows that /  is an isomorphism.

It is easy to see that, if we identify nn (a , B) with nn (As , B) via / ,  then 
the homomorphism j*  in Theorem 2.1 is just the homomorphism induced by 
the “ projection ” map j  : A2 A2/Im a =  A3. So, if Ker a is injective, we 
have the exact sequence:

------* 7C (A3 , B ) i---- > 7Zn (A2 , B)  — 7Un(A! , B) — -— 7Tn_i(A3, B) ->*• • •

If Ker a , Ker a' are injective, observe that a map <j> : a —* a' (as well as 
a map y : B —>• B') induces a commutative diagram of such sequences. From 
this diagram, it follows that Scj>3 is an z-homotopy equivalence if S^1 and SA2 
are.

Similarly, S2^1 (or S2(J)2) is an z-homotopy equivalence if S c[)2 (or S2^1) 
and S è 3 are.

3. Recall that a map (3 : B1 —* B2 is a fibre map if we may lift any map 
{jl : I —> B2 to Bx, where I is any injective. There is an “ excision ” homomor­
phism e : 7rn_j (A , B0) -* nn (A , p), which is an isomorphism if p : Bx —>■ B2 
is a fibre map, where B0 =  Ker p is the fibre of p.

Let p  : B -> SB =  B/B be the projection map.

Proposition 3.1. I f  p is a fibre map, then tz (A , B) ^  'tz1 (A , SB).

Proof, l ip  is a fibre map, then s : tu (A , B) ^  ^  (A , p). From [3, Theorem 
13.15], we have the exact sequence for p:

• • • —* 7rx (A , B) — - — > 7Ti (A , SB) — -— > 7^  (A , p) — -—->■ H (A , B)

But uj (A , B) =  0 and (A , B) =  0, so tcj (A , p) tzx (A , SB). We conclude 
then 7i (A , B) ^  71! (A , SB).

Note that the homomorphism that carries [#] e 7c (A , B) in [Sx] e ^ ( A , SB) =  
=  7t (S A , SB) is an isomorphism that differs from the isomorphism of Propo­
sition 3.1 only by the sign.

The following proposition doesn’t hold in the topological case, so the 
homotopy theory of modules differs from the homotopy theory of topological 
space.
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Proposition 3.2. B ~ i 0 if and only if p is a fibre map and SB 0.

Proof. The necessity is obvious. The converse is a consequence of Pro­
position 3.1.

Note that if B is a module over a principal ring, then since SB ~ i 0 , B 
is injective if and only if p is a fibre map.

For any pair a, denote by a 0 the inclusion A 0 =  Ker a c-> A1.

Proposition 3.3. There is a homomorphism of groups 

g : 7T (a , p) -h* n (oc0, p0) © n (As , B3) .

g is a monomorphism if the projection map q : B2 —> B3 is a fibre map and g is an 
isomorphism i f  both the projection maps p  : A2 -* A3 and q : B2 -> B3 have right 
inverses.

Proof. The construction of g can be seen from the following diagram:

0 0 0

A0 ------ A 0

:1 a°!
Ai <--------- Ai

5c a

A2 <--------- A2

V

A3 <------ a3
!

0 0 0

Explicitly, g ([x1 , x2]) =  (f#0 , x1] , [#3]). The rest is deduced from this diagram 
and the construction given in [3, Prop. 13.13].

There are also “ natural ” homomorphisms of groups:

i) hx : n (a , (3) 7t (Ax , Bj) © n (A2 , B2) ;

ii) h2 : 7T (a , p) tc (A i, Bi) © tt (A3 , B3) .

Proposition 3.4. h2 is monomorphism if  Ker a is injective and q : B2 -> B3 
is a fibre map\

h2 is an isomorphism i f  Ag ^  Ax © A3, a is the inclusion Ax -> Ax © A3 and 
q : B2 —>• B3 has a right inverse.

XQ B„

r °
-*■ B, 

P

X3 Bj,
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Examples, i) If a : Ax —>* A2 =  A1 © A3 and p : —* B2 =  B1 © B3 are
inclusions, then tz ( oc , p) ^  n  (A j, Bj) © fc (A3 , B3) .

ii) If a is an inclusion of an injective module A1 in A2 and if p — co : 0 -> B, 
then we deduce 7r (a , B) ^  tu (A2/A1, B), but clearly A2/Ax — ̂  A2 , so we 
get ir (a , B) ^  re (A2, B).

Acknowledgement. — The author is very much indebted to Professor I. 
Pop from University “ Al. I. Cuza ” , Iasi.
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