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Calcolo delle variazioni. — On the lower semicontinuity of certain
integral functionals. Nota di ExN1o DE GIorGi, GIusepPE BuTTAZzZO
e GIianNt DaL Maso ®); presentata ®® dal Corrisp. E. DE GIORGL.

RiassunTO. — Si dimostra che il funzionale / f(u, Du) dx & semicontinuo inferior-

Q
mente su Wllo’: (Q), rispetto alla topologia indotta da Llloe (), qualora I'integrando
f (s, p) sia una funzione non—negativa, misurabile in s, convessa in p, limitata nell’intorno

dei punti del tipo (s, 0), e tale che la funzione s+ f(s, 0) sia semicontinua inferior-
mente su R.

INTRODUCTION

Let n>1 be an integer and let Q be an open subset of R*. For
every ue Wi (Q) we set Du= (D, u,---,D,u), where D;u = du/ox;. By
“ measurable ” we always mean Lebesgue-measurable. For every te R we

set t+=max {t,0}. For every function f: RXR"—>R and for every se R
we define

[f(s ’ O') _‘"f(s ’ P)]+
2|

The aim of this paper is to prove the following theorem.

as () = lim sup
p—0

THEOREM 1. Let f: RXR" — R be a function with the following properties:
(2) for every sc R and pe R" we have f(s,p) >0
(b) for every peR" the function sw— f(s,p) is measurable on R ;
(c) for every se R the function p—>f (s, p) is convex on R";
(d) the function s—f(s,0) s lower semicontinuous on R ;
(e) the function oy belongs to Ly, (R).
1,1

Then for every wue Wy, (Q) the function xw— f(u(x), Du(x)) is measurable
and the functional F : Wi (Q)—[0, + oo] defined by

F (u) =ff(u , Du) dx
Q
(*) L’ultimo autore & stato finanziato dal Ministero della Pubblica Istruzione

(60°/o 1982).
(**) Nella seduta del 14 maggio 1983.
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is lower semicontinuous on Wiy, (Q) with respect to the topology induced
by Lige ().

ReMARK 1. This theorem differs from other semicontinuity results (see [2],
[5], [7] Chapter 4, [8] [9]) chiefly in that we do not assume that the function
s+ f (s, p) is continuous or lower semicontinuous, except for p==0. This
allows us to include in a general framework the case of functionals of the form

f( Zn] a;,; (u) DiuDju)qu

iy =1

where ¢ > 1/2 and a; ; are measurable functions such that

3
E ai,; (S)PZ'PJ' >0 for every seR,peR"

1,5=1

RemARk 2. If f satisfies conditions (a), (b), (c) of Theorem 1, then condi-
tion (e) is satisfied whenever there exist ¢ > 0 and fe Ly, (R) such that
f(s,p) < B(s) for every se R and for every pe R* with |p| <=.

Remark 3. Hypothesis (e) in Theorem 1 cannot be dropped, as the
following example shows. Let =1, Q=1]0, 1[, and let f be defined by

/I'1+%]+ i s=£0

fG,p)=
\1 if s=0.

For every ¢ >0 let u.(x)==¢c—ex. Then (u.) converges to 0 as ¢—0,
but F () =0, whereas F (0)=1. Note that f satisfies all conditions of
Theorem 1 except (e).

PRELIMINARY LEMMAS.

For every x,ycR" we denote by (x,y) the scalar product of x and y
and by | x| the Euclidean norm of x.

Lemma 1. Let ue Wi (Q) and let E be a Borel subset of R with
meas (E)y==0. Then Du=0 a.e. on u™ (E).

Proof. The proof follows easily from a result of De La Vallée Poussin
(see [3], [10}).

DeriNiTION 1. We say that a function f:RXR"— R is an integrand if:
(a) for every pe R" the function s+ f(s,p) is measurable on R;
(b) for every se R the function p+—>f(s, p) is continuous on R;

(c) the function s+ f(s,0) is a Borel function.
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DrriNiTION 2. We say that two integrands f, g are equivalent integrands if
there exists a Borel set N< R with meas(N)= 0 such that

(@) for every se R— N and pe R" we have f(s,p)=g (s, p);
(b) for every se R we have f(s,0)=g (s, 0).

Lemva 2. If f,g are equivalent integrands and wue Wi (Q), then
S (u(x), Du (x)) =g (u (x), Du (x)) a.e. on Q.

Proof. Tt follows from Lemma 1.

Lemmva 3. If f is an integrand and ue Wi, (Q), then the function
x> f (u (x) , Du (x)) s measurable on Q.

Proof. There exists a Borel function g : RxR"—R such that f and g

are equivalent integrands. The result now follows from Lemma 2.

LeMMa 4. Let a:R —~R be a Lipschitz continuous function and let
b:R—R be a bounded measurable function such that a' (s)=1b (s) a.e. on R.
If ue Wit (Q) and v==aou, then ve Wy; (Q) and Dv => (1) Du a.e. on Q.

Proof. See [6] Lemma 1.2 and Lemma 1.5.

Lemva 5. Let be L'(R,R") and let a:R—>R" be defined by

[4
a(t)= f b(s)ds. Let ue Wyg (Q) be a function such that
0

f(b(u),Du)+dx<—l—oo.

Q

Then, for every ¢c Co (Q) with ¢ > 0, the function (b(u),Du)o is in
L' (Q) and

J‘<b (¥), Du) ¢ dxz—f {a(u), Do) dx.

Q Q

Proof. If b is bounded, the thesis follows from Lemma 4. In the general
case it suffices to approximate b by the sequence (b,) defined by

b(s) if |b(s)|<h

by (s) ==
AN 0 otherwise .
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Lemma 6. Let (f,) be a sequence of non-negative measurable functions from
R” into R and let f_==supf,. Then for every open subset A of R" we have
3

| Futwyax =

k v
== sup sup : Z [ fi(x)ydx: Ay, -, A, pairwise disjoint open subsets of A .
keN L i=1 .
Ay

Proof. For every ke N set g,==sup{f;:¢=1,---, k}; then by Beppo
Levi’s theorem we have

_{foo (x) dw == sup {gk (x) dx.

Now fix ke N; there exist measurable pairwise disjoint subsets B, ,---, B, of A
such that g, =f, on B,. Then

W

A B

{gk (x) dx = f; fi(x) dx = sup { 54_31 ffi (x)dx : K; < B;; K; compact} =

H

k

= sup { ?::1 j fi(x)ydx : Ay, ---, Ay pairwise disjoint open subsets of A } .
Ag

Lemma 7. Let (f;) be a sequence of non-negative integrands and let f.,-=sup f,.
3

Set for every open subset A of Q, every ue Wi, (A), and every he N U {co}

Fh(u,A):ffh(u,Du)dx.

Suppose that for every he N and every open subset A of Q the functional ¥, (+, A)
is Ly, (A)-lower semicontinuous. Then, for every open subset A of Q the functional
F (s, A) is Li, (A)-lower semicontinuous.

Proof. It follows from Lemma 6.

Proor oF THEOREM 1.

The proof of Theorem 1 is divided into two parts. In the first one we deal
with the case f(s, 0)=0 (considered in Lemma 10); then we shall use this
partial result to prove the general case. 'The measurability of the function
x — f (u (x) , Du (x)) has already been proved in Lemma 3.
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The functionals we are going to consider are defined in Wi, (Q); when
we say that a functional F is lower semicontinuous, we mean that F is lower
semicontinuous on Wi, (Q) with respect to the topology induced by Li, (Q).
For every B < R we indicate by 1 the characteristic function of B, defined
by 1g(s)=1 if seB and 1g(s)=0 if se R—B.

Lemma 8. Let b:R —R" be a measurable function and let g : R — R be
a lower semicontinuous function with g << 0. Then the functional

F = g+ @, Dul)* ds

is lower semicontinuous.

Proof. First assume that b and g are bounded. For every ue Wi (Q)
we have '

F (u) = sup :f[g(u)—!— (b(u),Du)]:pdx:cpeCf;o(Q),OScpSl};
o

therefore it is enough to prove that for every pe C; (Q), with ¢ >0, the
functionals

G(u>=fg<u><pdx

Q

H(u):((b(u),Du}cpdx

J

Q

are lower semicontinuous. For G it is enough to apply Fatou’s lemma. From
Lemma 4 we obtain

H (u) = ’ div (aou) ¢ dxz—f (a(u), Do) dx
@ Q
where a (f)== f b(s)ds.

0

This implies that H is continuous on Wj:¢ (Q) with respect to the topology
induced by Li, (Q).

If b or g are unbounded, let (b,) be the sequence of functions defined by

PLIC I ETIOTE

bh(s):\o

otherwise
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and let (5;) be an increasing sequence of functions in C; (R) with ¢, >0 and
lim o, (s) = 1 for every se R. Since g is lower semicontinuous and g <0,
n

every function o (s) g (s) is bounded. By Beppo Levi’s theorem

F@=sup [ [50@g @+ loa () by (@), Dul]” dv

Therefore the lower semicontinuity of F follows from the result obtained in
the bounded case.

LemMa 9. Let b:R —R" be a measurable function and let g : R — R be
a measurable function with g <O0. Then the functional

F(u)=f[g(u)+ (b (w), Du)}" dx

is lower semicontinuous.

Proof. By Lusin’s theorem there exists an increasing sequence (K;) of com-
pact subsets of R and a sequence (g;) of continuous functions with g, < 0, such
that g, (s) ==g (s) for every se€ K, and meas(R— E)==0, where E=(J K,.

%

Since g << 0, using Lemma 2 and Beppo Levi’s Theorem, we get

P )= 1) 2@ + b @), D)l dv=

::gg f[lKh (u) g, () + {1k, (u) b (u) , Du)]" dx

for every ue Wy (Q). Since g, <0, the functions 1k, (s)g,(s) are lower
semicontinuous, thus the lower semicontinuity of F follows from Lemma 8.

Lemma 10, Assume that f satisfies conditions '(a), (b) (c) of Theorem 1,
and that f(s,0)==0 for every sc R. Then the functional

F(u):’ f(u,Du)dx
Q
is lower semicontinuous.

Proof. For every se R set

K () ={(a,b)e RXR":f(s,p) = a+ (b,p) Vpe R"}.

By the measurable selection theorem (see [1] Th. III, 30 page 80) there exist
a sequence (@) of measurable functions from R into R, and a sequence (b;)
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of measurable functions from R into R”, such that for every se R the set
{(an(s), b5 (s)) :he N} is dense in K (s). Then for every scR,pe R

1) fe,p)=sup{la+(b,p)]" :(a,b)e K(s)} = sup [a () + (B (s) > P)T"

Since f (s, 0)==0, by (1) we have a,(s) < 0. Thus the lower semicontinuity
of F follows from Lemma 9 and from Lemma 7.

Lemma 11. Let ge Cy (Q) with ¢ > 0. Under the assumptions of Lemma 10
the functional

F(u)sz(u, Du) ¢ dx
0
is lower semicontinuous.

Proof. For every h,keNlet Q ;= {xec Q:¢(x)>k2"} and let
4h
¢, (%) = 2—"k§ lo,, (%).

The sequence (¢,) is increasing and ¢ =sup¢,. Then
keN

P
F (u) ==sup ff(u,Du)cphdx=sup2—h > }f(u,Du)dx.
heNQ heN 7r:=l£-2h‘é

Thus the lower semicontinuity of F follows from Lemma 10.

Proof of Theorem 1. Assume first that «,e L' (R). For every se R let
3f (s,0) be the subdifferential at the point p=0 of the convex function
pr>f(s,p) and let b(s) be the element of 3f (s, 0) such that

[b(s)|==min{|qg|:qe€3f(s,0)}.

It is known that b : R — R" is measurable (see [4], Th. 1.2, page 236) and
that |b(s)| == o,(s) for every se R. Since

(2) fGsp)=f(s,0)+ {(b(s),p)
for every se R, pe R", the function
3 g, p)=f(s,p)—f(s,0)— {6(s), )

satisfies all conditions of Lemma 10.

Let (u;) be a sequence in Wi (Q) converging in Ly, (Q) to a function
U, € Wit (Q); we have to prove that

4) F () < liminf F (7).
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If the right-hand side is -+ oo the inequality is trivial. So we may assume that
liminf F (1,) <+ oo and that F (u,) <+ co for every 2e N. Since f(s,p) =0
R

by (2) we obtain

J (b(u,), Du)tdx <F (u,) <+ co.
&

Since the function (b (s), p)" satisfies all conditions of Lemma 10 we have

((b (uy) , Du ) dx < liminff (b (u,) , Dup)" dx < liminf F (z,) < 4 oo.
3 no h
Let 9eCy (Q) with 0 <¢ < 1. For every se R set

t

a(t ::‘/ b(s)ds;

0

by Lemma 5
(5) f(b (w,), Du,) o dx = — f(a (u,) , Do) dx
O o

for every he NU {co}. By Lemma 11

©6) | £ (e, D) @ dic < liminf ] g (u,, D)o ds.
o h o
Q Q

Sincé the function s+~ f(s,0) is lower semicontinuous, by Fatou’s Lemma

) Jf(u“ ,0)pde < lirrlllinf!f(uk , 0@ dx.

Since a is continuous and bounded, from (5) we get

(8) J (b () , Duy) o dax == li;fnJ_ (6 (u,),Du,) o dx .

Q

From (3), (6), (7), (8) we obtain
j f(uy, , Duy) ¢ dx < liminf f F(u, D) o dx < lim inf F ().
h h
Q Q
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Since

F (#y,) == sup {J‘f(uoo,Duoo)cpdx:@ngo(Q),OScpSI}
0

we get (4) and the Theorem is proved in the case ;e L' (R).

In the general case «;e Ly, (R), let (c;) be an increasing sequence of

functions of Cj (R) with ¢, >0 and limo,(s)=1 for every se R, let
3

fu(s,p)==0,(s) f(s,p) for every seR,peR” and let F, (u):ffh (u , Du) dz.

1,1
For every ue Wy, (£2) we have °

F (u)=sup F, (u).
3

. 1 . . . .
Since o;,c L" (R) the functionals ¥, are lower semicontinuous; hence F is
lower semicontinuous and the Theorem is proved.
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