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RENDICONTI
DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

S e d u t a  d e l  1 4  m a g g io  1 9 8 3  

P r e s i e d e  i l  P r e s i d e n t e  d e l l a  C la s s e  G iu sep p e  M o n ta le n t i

SEZIONE I
(Matematica, meccanica, astronomia, geodesia e geofìsica)

Analisi matematica. — Interpolation problems in cones. N o t a  I 
d i  C a r l o s  A .  B e r e n s t e i n  e  D a n i e l e  S t r u p p a ,  p r e s e n t a t a  <*) d a l  C o r -  

r i s p .  E .  V e s e n t i n i .
Riassunto. — In questa nota, si studiano problemi di interpolazione per varietà 

discrete in spazi di funzioni olomorfe in coni.
In particolare si mostra come sia possibile estendere il Principio Fondamentale di 

Ehrenpreis ad equazioni di convoluzione nella spazio H c (H), introdotto in [4] in connes­
sione con problemi di fisica quantistica.

Introduction

It was shown by Ehrenpreis and Palamodov [5], [10] that the class of 
AU-spaces is specially suited to the study of partial differential equations with 
constant coefficients (PDE). The examples of AU-spaces given in [5], [10] 
and [1] are, loosely speaking, related to spaces of distributions of compact 
support. In this way the analysis of systems of PDE is reduced to interpolation 
problems in spaces of entire functions in Cw with growth conditions.

For instance, for the AU-space & (Rn) of C°°-functions on Rw, one studies 
interpolation problems in the space S' (Rn) of Fourier transforms of distri­
butions with compact support in Rn. The Paley-Wiener theorem describes 

as the space

è '  (Rw) =5 { /  entire function in C" : 3 A , B >  0 such that 

| / ( * )  | <  AeBi>(2) for all «  C*}

(#) Nella seduta del 23 aprile 1983.

19. — RENDICONTI 1983, voi. LXXIV, fase. 5.
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where p (z) — | Im z  | +  log (2 +  I £ I )• Furthermore, the space S' (Rw) turns 
out to be an algebra so that the interpolation pioblems are tied to the ideal 
theory in such algebra.

It is via this route that Ehrenpreis proved his Fundamental Principle for 
PDE. This principle states that every solution of an homogeneous system of 
PDE can be represented in terms of the exponential solutions of the same 
system.

In [2] and [11] the Fundamental Principle was extended to convolution 
equations in the same kind of AU-spaces considered by Ehrenpreis and Pala- 
modov. It turns out though, that a number of spaces of interest in quantum 
field theory, for instance, correspond to spaces of analytic functionals with un­
bounded carriers. In view of their possible physical applications, de Roever [4] 
shows that a number of these spaces could also be considered AU-spaces 
and proved that the Fundamental Principle for PDE was still valid. Clearly 
the same kind of physical applications shows that one should also study delay- 
differential equations and other integro-differential equations of the convolution 
type. The new problem that arises in the spaces considered in [4] is that one is 
forced to study interpolation problems in spaces of holomorphic functions in 
cones, and furthermore these spaces are often not algebras. The aim of this 
paper is to show how one can extend the work from [2], [11] to the AU-space 
Hc (£2) considered by de Roever. This space should serve as a model on how 
to extend the Fundamental Principle to the whole list from [4]. This space 
Hc (£2), to be described precisely in the next section, is a space of functions 
holomorphic in a convex set Q of Cw. The recent work of Meril [9] in the 
same direction considered the space Hc (£2) only when n ~ l  and £2 is a 
cope; restrictions which we do not need to impose.

The first author would like to thank the National Science Foundation and 
General Research Board of the University of Maryland for their generous 
support.

2. Basic definitions

In this section we recall from [4] the definition of the space Hc ( Q) which 
is the one we will deal with throughout this paper. Let £2 be an open connected 
region of Cn9 denote by H (£2) the ring of holomorphic functions on £2. If M 
is a weight on £2, i.e. a positive continuous function on £2, let H (£2 , M) be 
the normed space defined by

H (£2 , M) : =  { f e  H (£2) : sup \ f ( z )  | M (*) <  oo} .
z eO

In the following, T will always denote open convex cones in Cn with vertex 
at the origin. If V is such a cone and S2n_1 denotes the unit sphere we shall 
write

pr (T) — r n  S2w-1.

The following is a well-known lemma.
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Lemma 2.1 (see [4]). Every closed set Q c  which does not contain any 
real line determines an open convex cone V and a convex, homogeneous of degree 
one function g on Y such that

Cl=: £ l ( g , T) : =  {£ e  C“ : —  Im {y ,Z) < g ( y ) V y e  T }  ,

where (y  , £} — yi Ki +  * * • +  yn C  • Conversely, every pair (g , Y) as above 
determines a closed convex set Q ( g , Y).

We shall say that 0  and ( g , Y) are in duality.
In [4] de Roever generalized to these convex sets Q, (g , Y) the Ehrenpreis- 

Martineau theorem [5], [8] which dealt with the space of holomorphic functions 
in a bounded convex set £i, i.e. Y =  C \ We recall briefly here de Roever’s 
result.

If r is as before, a subcone F  of Y is said to be a relatively compact cone 
( F e e  T) if pr (F )  is a relatively compact subset of pr (T). We also 
say that a family {I\}fc>i of open convex cones is an exhaustion of Y if:

r i c c r w c c r  and r  — ( J r * .
h>l

Given a pair (g , Y) and an exhaustion {I\}  of Y we set

; — yi ^  (#) +  - j - 1^|,

°

and let Ùk}C its interior. One can now define the space HC(Q) of holomorphic 
functions in Q.

Definition 2.1. Hc (Q) : =  lim H ^O ĵC , exp
&>i

(It is easily seen that this definition is independent of the choice {I \}  of 
exhaustion of Y).

(The set up of the Ehrenpreis-Martineau theorem requires us to define the 
space of functions of exponential type. Let Y (k) denote the convex set

r (*) : =  r t n (*e cn ■. \ # | > Y j •

D efinition 2.2. Expc (g , Y) : lim H ^ r ( A ) ,
Jc> 1

It is not hard to see that Expc ( g , Y) could also be defined as the 
space of functions /  holomorphic in Y such that for any F  c  c  Y and any 
s , S >  0 one has

sup I / (* )  exp (— g (z) — s I S' I ) I <  oo .
zeT'
|z|>8

Finally, if Y> one sees that the function

z
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is an element of HC(Q), so that, for jxeHc(Q) we can define its Fourier 
transform

where \iz indicates that p, operates in the variable z . The following result, which 
generalizes the Ehrenpreis-Martineau theorem, holds (see [4] for its proof.).

Theorem  2 .1 . The Fourier transform &  establishes a topological isomorphism 
between Hé(Q) and Expc (g , T).

3. Ideals in  £xp c (0 , T). D iscrete case

The study of convolution equations in Hc (fi) becomes easier when 
Expc (g , T) is a commutative algebra. This is precisely the case when 
O — O ( 0 , r ) ,  i.e. g =  0. Note that in this case Q is a convex cone with 
vertex at the origin. This was precisely the case considered for n =  1, by Meril 
in [9]. We postpone the discussion of the latter case (g 0) to a later section.

Since Cl is a convex cone, if x , y  e Q then also x y e  Cl. Hence, one
easily checks that for f e  Hc ( Q) , O we also have

z ^ f ( z + Q e H c (Cl).

Therefore, one can define, for jxe H^(Q)

f i * / ( Q : = = ( ^ , / ( * + i : ) ) ,

which is an element of HC(II). As usual, we say that /  is mean-periodic (with 
respect to p, 0) if jx * / — 0. From the general approach indicated in the 
introduction we know that the study of mean-periodic functions reduces to 

I the study of ideals in the space Expc (0 , T).
Let us start with the case of one variable. Let p =: (pj, • • •, p7) be an /-tuple 

of functions in Expc (0 , T) and consider the ideal I =  I (p) generated by the 
Py . Its multiplicity variety V =  V (I) is the set of pairs (z , m)e T X N such 
that py (#) =  () for y = l , . . . , Z  and m is the minimum of the orders of 
the py at z. Recall that the local ideal Iloc (p) defined by the p. is the set of 
all functions g e  Expc (0 , T) such that for every point z e  T there is an 
open neighborhood U and functions g±, • • •, gl e H (U) satisfying

g = g i 9 i + - - -  +  gi?i  i n  U *

It turns out that Iloc (p) is a closed ideal in Expc (0 , T) (see [6], [2]). Let 
{r*}*>i be an exhaustion of T. Given two sequences {s&} , {a }̂ or real numbers 
zk >  0 , a*. >  0 , define

S (p ; k ,  a,) : T (k) : | p (z) \ <  e**"8*1*1} ,
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where, as usual,

I P (%) I ~  (  S  Ip/ (*) i2)^ •

D efinition 3.1. A function p e Expc (0 , F) (or a vector valued function 
p =  (p1 , * * •, p7)) is said to be slowly decreasing if there exist an exhaustion 
{FjJ of F and two sequences {zk} , { a j  of real numbers (s*. >  0 , ak >  0) 
with &k \  0, such that the connected components of the sets S (p ; k , zk , a*.) 
are relatively compact in F (k) and have uniformly bounded diameters 
(for each k).

We observe that this is the natural extension of the definition in [2]. Also 
note that the definition given in [9] assumes a& ^  0.

One can prove now the following result.

T heorem 3.1 (n — 1). I f  p e Expc (0 , V) is a slowly decreasing function 
of one complex variable then I (p) =  Iloc (p).

Proof. Let g e  H (T) such that gp e Expc (0 , F). It is enough to show 
that g e Expc (0 , F) (this is clearly a division theorem, the reader is referred to 
[2] for a similar situation). Hence we have that for every e >  0 and every 
k >  1 there is a positive constant A =  A (k) such that

(1) I *(*)?(*)  I < A e Elz| on T(k) ,

and our aim is to show that for every 8 >  0 and every k >  1 there is B >  0 
such that

(2) | * ( * ) | < B * Ò‘Z» on r ( * ) .

It i s1 clearly enough to show that (2) holds for all k ]> k0 =; *b C » )  ^  i. Since 
0Lk —> 0 we can find k0 such that z — 8 — uko >  0. On the boundary aS of 
S — S (p \ k , z k , cLk) we have I p (^) | =  e* e~ak »̂ Hence on aS ,

(3) | g (») | <  —  <  A  g8|zl .
Zk Zk

Since the components of S have uniformly bounded diameter the function | # | 
remains essentially constant on each component and we can apply the maximum 
principle to g, obtaining (2) in S with B =  B (k , S) >  Ajzk. Clearly on 
T ( k ) \S  the same inequality is immediate. □

Using the solvability of the non-homogeneous a-equation with bounds 
([6]) one can also show that if ? — (?!>•*•>?/) is slowly decreasing, then I =^Iloc 
(see [2], [7] or the proof to Theorem 3.3 below).
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We examine now the case of a discrete variety in Cn, n >  1. Definition 
3.1 makes sense for a vector valued function p — (px,• • -, pz) and it implies 
p-1 (0) is a discrete variety V. We furthermore will assume that V is a complete 
intersection, that is l — n. Before stating the analogous theorem to Theo­
rem 3.1 for n >  1 we recall the following result ([4], Theorem 7.3, see also [9], 
chapter 3) which extends a well-known result from [6].

T heorem 3.2. Let {I \}  be an exhaustion of the cone T , 8% a decreasing 
sequence of positive numbers and the plurisubharmonic functions in
T , <D& (#) =  | z  | . For any sequence of positive numbers {Kfc} there is a
sequence {M*.} such that for every (0 , q -f- 1) form g with coefficients in Lfoc (T) 
and dg — 0, there exists a (0, q) form u with coefficients in Lfoc (T) satisfying 
d u = g y and, for every k, we have

where | dz  | denotes the Lebesgue measure in Cn.
We show now that Theorem 3.1 can be extended to the case of n complex 

variables.

Theorem 3.3. I f  p =  (px , • • •, p J  is slowly decreasing in Expc (0 . T ) , 
r  C Cn, then I(p) =  Il0C(p).

Proof. We follow closely the proof of Theorem 4.2 in [2]. Start by choosing 
r&, , a % so that one can apply the interpolation results from [2] to all the
components of S (p ; k , zk, a&) for every k. This can be done since p is 

. slowly decreasing. Consider now a function X € Iloc, we want to prove 
Xe I. Since Xe Iloc and T is convex one can apply Cartan’s Theorem B [6] 
to otbain

Since X e Expc (0 , V) we know that for every s >  0 , k >  1 there exists A >  0 
such that

Thus, using the interpolation results from [2] we see that for any k there 
are oĉ -e H (S (p ; k , zh , a*.)) such that

implies

n

X = S / . P y  . / ^ H ( r ) .
1

I X(a) | <  Ae£|21 on V (k) .

n

and
x =  S  “yPy»J = 1
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for some constants Ck, D& >  0. Replacing now Theorem 2.6 from [7] with 
the analogous one which follows from Theorem 3.2 above, we can, as in 
[2; Theorem 4.2], substitute the olj by globally defined and which satisfy

I (*) I <  Ejfc in r(A).

This concludes the proof. □
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