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Geometria algebrica. — An iterative construction for ordinary 
and very special hyperelliptic curves. Nota di F rancis J. S ullivan, 
presentata (*) dal Socio G. Scorza D ragoni.

Riassunto. — Si costruiscono famiglie di curve iperellittiche col p—rango della 
varietà jacobiana uguale a zero. La costruzione sfrutta le proprietà elementari dell’ope
ratore di Cartier e delle estensioni p -cicliche dei corpi con la caratteristica p  maggiore 
di zero.

Let k be a perfect field of characteristic p  >  2 and let X be a hyperelliptic 
or elliptic curve defined over k. Then, after taking a finite extension of the base 
field k if necessary, one may take a defining equation for X  in the form

(1) X :  y ^ f ( x )

where f ( x ) e  k [#], degree (f(x)) = z 2 g  +  1 or 2g 2 with g =j genus of X, 
and f (x )  has no multiple roots in k , the algebraic closure of k. Let ]p be the 
group of ^-division points on the Jacobian variety of a non-singular model 
for X. Then, as is well known, the rank r of the elementary abelian group 
satisfies

(2) 0 <  r <  g .

Indeed, r may be characterized either as the rank of the g X g  matrix AA(2?) • • • 1}
where A is the Hasse-Witt matrix of X and A(3?7) is the matrix obtained from A 
by raising each entry to the p 3-th power, or, equivalently, as the rank of the 
Z/pZ-module spanned by the logarithmic differentials of the first kind on X. 
For these facts, and the basic properties of the Cartier operator which will be 
used in the sequel the reader may consult [1], [2], and [6].

X is said to be ordinary if r =^g\  otherwise X is special. In particular, if 
r =  0 X is said to be very special. This terminology also applies to curves which 
are not hyperelliptic. It was long part of mathematical folklore that “ the generic 
curve of genusg is ordinary”, but a proof of this fact appeared only in 1972 
[5], followed by another in 1974 [3]. In recent years special and very special 
curves have been studied intensively [3], [4], [7], [8] and [9], but even in very 
favourable cases one can rarely avoid tedious calculation in calculating r, al
though in light of [4] and [7] such reckoning may now be reduced to the deter
mination of certain ramification indices in the case of Artin-Schreier curves. 
Such information is useful in various contexts, for example the study of stable 
vector bundles over curves in characteristic p, and also as a first step in the

(#) Nella seduta del 12 marzo 1983.
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determination of the formal structure of the Jacobian variety of such curves. 
In this note we give an iterative construction for ordinary and very special hy- 
perelliptic curves, which produces a family of curves of increasing genus with 
r ~  0 and similarly a family with r ~ g .  In principle our results follow from 
those in [7] but since our aim is clarity we give a self-contained proof which 
allows one to “ see at a glance ” why the curves in question have the stated 
properties. We are indebted to Claudia Metelli for pointing out the usefulness 
of such results.

The following lemma is well known and merely expresses the “ naturality ” 
of the Cartier operator.

Lemma 1. Let L/K be a finite separable extension of algebraic function fields 
of one variable over k. For any differential r\ of K let (y])l  denote the co-trace of 
7] in L. Let CK and CL be the Cartier operators in K and L respectively. Then

Cl ((7))l ) =  (Ck (vi))l .

In view of Lemma 1 we will dispense with the subscript on C. In the 
sequel f s (#) will always denote an element of k [#] of degree 5 and having no 
multiple roots in k .

Theorem 1. Let X : y 2 / 2g+i (x) be a very special hyper elliptic curve, and 
let X* be the hyper elliptic curve obtained from X by the substitution x = ; z v — z. 
Then X * is also very special.

Proof, The genus of X* is pg +  {p — 1)/2, and since dz=^  — dx we may 
take a basis for the holomorphic differentials on X* in the form

dx\y , x dx/y , • • • , xg~x dx/y , xg dx/y

z  dx/y z*(p 3) xg dx/y ,

z p~x dx\y , z*-1 x dx/y , • • • , zp- x gg~x dx/y ,

Order these differentials lexicographically with respect to the exponents of 
x and By the hypothesis on X and Lemma 1, dx/y is not logarithmic. Hence 
we may assume inductively that there is no non-zero logarithmic differential 
in the &-space W spanned by dx/y , zdxjy , • • •, xi z g dxjy. Consider the space 
V spanned over k by W and the next differential appearing in the basis. We 
show that V also contains no nonzero logarithmic differential. We proceed by 
cases:

Case 1 : V — W © k • xi z*+1 dx/y , that is j  ^Lp — 1.

Suppose that cù =;  a00 d x / y ••• +  xfi y g+1 dxjy is a non-zero lo
garithmic differential, say o> =; dfjf. Then, by assumption, j +1 ^  0. Fur-
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thermore if g  is the ^(^-automorphism of k ( y , z )  defined by G ( y ) ~ y ,  
g  (#) ~  % +  1 we see that co = = ;  df°  If ° is also logarithmic and of the first kind, 
whence the same is true for co — co°. However it can be easily seen that 
the assumptions j  7  ̂p  — 1 and a u +1 7  ̂0 entail that co — co° is a non-zero 
element of W. This contradicts the assumption that W has no non-trivial 
logarithmic differentials.

Case 2: V =; W © k • xl+1 dx/y , that is j  =^p — 1.

As above we consider a non-zero logarithmic differential co in V. If co 7  ̂ co° 
we can argue as in case 1. Otherwise co is fixed under the action of g  and so co 
is (the cotrace of) a differential on X. If / +  1 <  g , Lemma 1 again contradicts 
a contradiction to the assumed very special character of X. The only remaining 
possibility is that co =; a00 dx/y +  a10 xdxjy +  • • • ag0 xg dxjy.

Now each summand appearing in the expression for co, except the last, is 
the cotrace of a differential of the first on X. The space of differentials of the 
first kind is stable under the action of C. Thus, to obtain a contradiction of the 
assumption that co is logarithmic (which is to say fixed by C), it will suffice to 
show that C (xg dx/y) lies in the &-space spanned by dx/y , xdx/y , • • •, x0,-1 dxjy. 
We calculate:

(3) C (xg dx/y) = y _1 C (xg+1y v~x dxfx) ~ y _1 C {xg+1f $g+1 ( x f ® d x j x )  .

The argument of C in the last term is a polynomial in x of degree pg-\- J (p + 1 ) <  
<  p (g +  1) multiplying dx/x. All terms of xgnf 2g+1 which do not
have exponents divisible by p  give differentials annihilated by C, while 
C(x?pdxlx) — ocJdxlx =  x°~1dx. But we have just seen that the /  which occur are 
less that or equal to g. Hence C (xg dx/x) doe indeed lie in the &-space spanned 
by dx/y ,• • -, x9' 1 dxjy. This provides the required contradiction and proves 
the theorem. QED

Remark: Starting from a supersingular elliptic curve E : y 2=^x(x  — 1)
(x — X) Theorem 1 gives an inductive procedure for constructing very special 
hyperelliptic curves of genera p x +  J (pl — 1).

One might expect a similar result when the defining equation for X is of 
the form y 2 =  ̂f^g+  ̂ (#), but a glance at the proof of the last step in Theorem 1 
shows that this is emphatically not the case. There is, however, a “ dual ” to 
Theorem 1:

T heorem 2. Let X : y 2=z f ĝ+^(x) be an ordinary hyperelliptic curve, and 
let X be obtained from X by the substitution x ~ z v — z. Then X* is also ordinary.

Proof. Note that the genus of X* is now pg -\- (p — 1), so that the basis 
analogous to that used in Theorem 1 has xg zv~2 dxjy as the last entry in the last 
column. Now repeat the proof of Theorem 1 replacing the word “ logarithmic ” 
by the word “ exact To obtain the desired contradiction in the final step
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in this situation it now suffices to show that C (xg dx/y) does NOT lie in the 
&-space spanned by dx/y , xdx/y , • • - , xflr-1 dx/y. Now, however the degree of 
the polynomial appearing in the argument of C in the final term of equation (3) 
is exactly p (g +  1). This shows that xg dxjy appears with non-zero coefficient 
in C (x9 dx/y) and provides the desired contradiction. QED

We can subsume the inductive procedure mentioned above in the following 
simple generalization of the preceding results, when k ~ k .

T heorem  3. Let a ( z )  be an additive separable polynomial, that is, let
t

a («) =  S  cm with > Cme k .  Let X x : y 2 — f 2g+1 (x)
m=0

be a very special hyperelliptic curve, X2 : y 2 =^f2g+2 (x), an ordinary hyperelliptic 
curve, and let X* and x£  be the curves obtained from Xx and X2 respectively by 
the substitution x — a (z). Then X* is very special and X j is ordinary.

Proof. If u is a root of a (z) then z —>• z +  u> y  —>■ +  y  define automor
phisms of k (y  , z) over k (x), and every automorphism can be so obtained. 
Using these automorphisms in place of the powers of g one sees easily that the 
proofs of Theorems 1 and 2 carry over with the sole modification that in Case 2 
we can argue as in Case 1 whenever co is not fixed by at least one automorphism 
which fixes y . (The Galois group of k (y , z) over k (x, y) is now not cyclic but 
elementary abelian of order =s degree a (z)). QED.
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