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RENDICONTI

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta del 12 febbraio 1983

Presiede il Presidente della Classe GIUSEPPE MONTALENTI

SEZIONE 1

(Matematica, meccanica, astronomia, geodesia e geofisica)

Analisi matematica. — Some Characterization of the ¢—Gamma
Function by Functional Equations. Nota II di MARINO BADIALE, pre-
sentata ®) dal Socio G. Scorza DRAGONI.

RiassunTo. — In questo lavoro, suddiviso in una Nota I e in una Nota 11, si esten-
dono alle funzioni g—gamma i classici risultati sulla determinazione univoca della funzione
gamma tramite equazioni funzionali; si introduce poi una ¢—generalizzazione di una
funzione fattoriale intera, e se ne indicano le principali proprieta.

2 The counterexamples which conclude part I serve to indicate the ob-
stacles to a reasonable extension of theorem b) to the functions T',(x) It is,
however, possible to weaken the assumption that d2 f/dx? be continuous, and

that' (1.2) holds for all g, if one strengthens the remaining conditions. More
precisely, we have:

ProrosrTioN 2. Let f(q, x) be a real valued function for ¢ >0 x > 0 such
that df|dx exists for all (g, x). Suppose that f(q, x) satisfies (1.1} and that there
exists a g, 7= 1 such that f(q,, x} > 0 for all x and

(2.1) : f (g0, nx) flgo,1ny,- -, f(go, (n—1)m) =
=1 (g0, ) f (g, 8+ 1fn), -, f(g, 2+ (n—1fm) (L +go+ -+ f

for all » > 0 and arbitrarily large positive integers n. Let ¢ (¢,%) =f (¢, x)/T';(x)

and g(q,x)==logo (g, x). Suppose that the sequence g, (g ,x; converges
uniformly in x as # — co to a function % (x) integrable on 0 <x <1, and that
the sequence g (¢o, ¥) converges for at least one value of x, 0 <& < 1.

(*) Nella seduta dell’8 gennaio 1983,

4, — RENDICONTI 1983, vol. LXXIV, fasc. 2.
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Then f(g,, x) differs from T (x) by at most a multiplicative constant,
that is f(gy, ¥) = kI'y (x) for some constant k.

Proof. As in the proof of proposition 1, ¢ (g, x) is periodic in x with
period 1 and so we need only consider x such that 0 <x <1 Replacing «
by x/n in (2.1) and passing to ¢ (¢, x) gives

(2.2) ¢ (0,%) 2 (g0, 1/n),- -, 0 (g0, (n—1)/n) =
=¢ (¢, %) o (g, (x+ 1)/n), -, (g0, (x + n—1)/n).

Taking the logarithmic derivative of both sides gives
1 n 7 )
(2.3) & (9, %) =— [&(q, x/m) + - + & (g (x+n—1)n)].

Hence we find

n—1

8ol W)= 3 8 o, (5 Bl — h (G R+ 3 B (o )

By the assumed uniform convergence of g,(go, x) to & (x) the first sum here
tends to zeio as n — co, while the second sum, being a Riemann sum for % (x)

1
on the interval 0 < x <<1, has limit fh () dx. On the other hand, by the hypo-
0

theses made on the sequence g, (g5, x) we find that g (g7, x) converges uniformly

as n — co to a function H (x) such that d/dx (H (x)) = £ (x). But then it is clear
1

h (%) dx =H (1) — H (0) =0, since H (x) has period 1, being a uniform

that |

/
0

limit of functions of period 1. Thus g,(g,, ¥) =0, and so g(g,, x) is constant,
and the same holds for ¢ (g, , x). QED.

The counterexample preceding this proposition satisfies all the conditions
except (2.1), when g, is taken less than 1 (greater than 1 if the exponent in £, (x)
is —4). Observe that it is not assumed that df/dx is continuous, although,
of course, this hypothesis ‘ after being thrown out of the door, has returned
through the window ” in the guise of our convergence assumption. As in the
corollary to proposition 1 we obtain a good analogue to theorem b) if we
consider the domain 0 <¢<1,0 < &:

CorOLLARY: let f(q,x) be a positive, continuous, real valued function for
0<q¢g<<1,0 < x such that df/dx is continuous.

Suppose that f(g, x) satisfies (1.1) and (2.1) for some positive integer #
and all ¢ <1. Then f(g, x) = &, T'; (x) for some constant k,, depending on g¢.
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Proof. Tteration shows that if (2.1) holds for » and all g, then it holds for
n?, n* etc., and hence for arbitrarily large values. The function g, (¢, x) is then
uniformly continuous on 0 <¢=<<1,0<x<{1, and this implies uniform
convergence of the g, (¢”, x) to g, (0, x) as n — co through the ‘ good’ values.
Clearly, g(g", x) converges to g(0,x) for all x and all ¢ < 1. QED.

3. We now seek to extend theorem c) to the functions I', (x). We restrict
ourselves to the case 0 <g¢ < 1. It turns out that in order to recover a good
analogue of theorem c) it is sufficient to impose a rather weak additional hypo-
thesis, the existence of a continuous derivative with respect to the variable g¢.

ProrositioN 3. Let f(q,x) be a positive real-valued continuous function
on 0 <q<1,0<«x such that df/dq is continuous. Suppose that f(q, x) satisfies
(1.1) and (2.1) for all (g, x) and all positive integers n. Then f(q, x)= T, ().

Proof. We use the notation of proposition 2; (2.1) now holds for all
(¢, x) and all m. Taking logarithmic derivatives with respect to ¢ gives that
h(q, x)==d/dq (log ¢ (g, x)) satisfies k(q, x) +ng" ' h(q", 1/n)+ - - - + ng* x
X k(g (n—1)[n) =mng 1 (h(¢", x/n) + - - - + h(g", (x - n—1)[n)).
Adding and subtracting 4 (¢", 0) and rearranging we find

6D b =[50+ b @+ B —h e b

However, it is not difficult to show that the right hand side of (3.1) tends to 0
for ¢ <1 as n —0o0. Indeed we have, on multiplying and dividing by =,

ha =t | b 0) 1 S R o+ Bl — b (e k)|

and
i

n—1

w3 (@ (5 Bin) — (g% by = 3 (P G5+ Ry —
— k0, (x + k)n)) + n—lzgo (R0, (x + k)n) —h (0, kjn) +

+ n Z,‘o (h (0, kjn) — h(q™, k/n)).

. By the uniform continuity of % (g, x} on the square 0 <¢<1,0<x<1
all three terms tend to 0 as n — co.
We conclude that %(g,x)=—0 on the closed square (the case ¢=1
0 <x <1 is already covered by Artin’s theorem c) and our conventional
interpretation of the functional equation for ¢g=1, or else, follows by con-
tinuity of % (g, x)).
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Thus g(g, x)==log (f(g, x)/T, (x)) is independent of ¢ and so we may
write g(g,x)=g(¥) and (2.1) gives

(3.2) gnx)+gn) 4 -+ g(n—1)n)=
=g@)Fg@+ln+ -+ g+ n—1)m).

At this point we may follow Artin’s path. Let g(x) have Fourier series

+oo )
g (x) ~ 2 ¢y eI,

U=—c0

+00

Then, the Fourier series of the left hand side of (3.2) is given by Z dy &V
9 o0

with d,=c for U#0 and dy=c,+ g(1/n) + - - + g (n — 1)/n).
The right hand side has Fourier series given by

C e i 0} ¢ E Uk . Ukin Tt Uz
2nt Uz 2mi Uk/n 21 Uk i

2 U Z ) ! ) ’
oo =0

+
U=~ U=—o0 2

n—1

which by the usual relation

n—1 . n
Z ezm Ukn —_
k=0

0 otherwise

if n|lu

+o0
o
becomes , nc,, e U™
U=—c0

Thus we have

+00 +©

2niUne 2im Jne _
U-Zoo dye == UZooncnue and so d,=mnc, .

Hence we obtain that for U 7% 0 ¢ =mnc,, that is, in particular:

(3.3) Ch=20/n and c¢_,==c,/n for all integers n > 0.

If we now replace g (x) by g (x) — ¢,, the new function satisfies the condi-
tions (3.3) and has constant term in its Fourier series equal to 0. As in Artin’s
proof, this now gives g (x) ==¢,. But then ¢ (g, x) is also constant, and since
9 (1,x)=1, we conclude that f(g,x)=T,(x) as desired. QED.

4. We conclude our discussion with some remarks relating to I';(x) con-
sidered as an analytic function of its arguments. As in the case of the usual
gamma function, analyticity in 2 (or even in g and g¢) together with the functional
equation (1.1) does not characterize I',(2) uniquely. In fact, if we multiply
by any analytic func.on periodic with period 1 we obtain another function,
satisfying (1.1), and if we demand that our multiplier assume the value 1 at all
integers (as does, for example, cos 2 nz), the new function will interpolate 7!,.
This technique will always lead to meromorphic functions, like I';(2) itself.
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We can, however, search for an entire function which interpolates n!,. In other
words we seek a g-analogue of the following function, introduced by Hadamard:

H (2) =(I'(1 —2))* d/dsz [log [T' (1 — 2)/2) / (1 —(=/2))]]-
H (2) interpolates #!, is entire, and satisfies the functional equation
H(z4+ 1)=2H(2) + (I' (1 —2))™.
In this regard we have the following.

ProrositioN 4: Define, for ¢ >0

) -
H,()=kq " T,(1—2)" d/dz [log [T, (1 — 2)/2) / Iy (1 —=/2)])
with k= (q—1)/loggq.
Then H,(2) is an entire function of 2 which interpolates »!, and which
satisfies the functional equation

A H G+ D)= TTTH G+ (4 =)

Proof. 1t is easy to verify that T',(z) has (simple) poles at the points
x=-—n-+ 2kmniflogqg for n=0,1,2,... and k=0,+1,+2,..., and
has no zeroes. Furthermore, the logarithmic derivative appearing in the defi-
nition has poles (simple, of course) in precisely the points where 1/T', (1 — 2)
vanishes, namely the points of the form » + 2 k wiflog ¢ with n=1,2,3,---
and k=0, 41, +2,.... In fact, the numerator contributes the poles ‘ over’
the odd integers, while the denominator contributes the poles with n an even
integer. Hence H, (2) is entire. In particular H, (0) is finite, so if (4.1) holds
we will have H,(1)=1, and by recursion H,(n+ 1)=n!,=T,(n+ 1)
for n=0,1,2,-... Thus it remains only to establish (4.1).

By definition we have

H, 5+ )= R (T (— 2))™ dide [log [T, (— 512) Ty (1 — 2)/2)]] =

— g (T (— ) A g [T (1 — 2)2) [ Ty — )2

It follows from (1.1) that

1—
Py(—3)= 75 N1 —3)
and
, 1—
l"q(——z/Z)_—_l—__—q—I‘q(l——z/Z).

q— z/2
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Hence
s 1—g~ L ((1—2)/2)]
B AR —_—y T el AN /ot Y I
H,(x +1)=—Fkq L, (1—=z) —gq d/dx [log T, (1=22)
. kq(zz+z)/2 (Fq (1 ))— q— d/dx [log _1:!_?] —
- (22—2)/2 o —1 1— qz r ((1 z)/Z] ]
=k (0, — o) L g [1og TG ]
+ kg (T, (1 — z))“ T tlogg g —
q —q 2 2 —1
 l—¢ 1 — g 1 (z - __
=g qH()+%—1 (T (1 —2))
1

a '1-:% H,(2) 4+ 3 (1 + ¢® (T, (1 —2)) " ¢* P2 QED.

Needless to say, when ¢ — 1 then H, (2) - H(z) and the functional
equation (4.1) tends to the equation of H (2).
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