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M eccanica. —  Precession of the perihelion within a generalized 
theory for the two body problem <*>. Nota di F r a n c o  C a r d in  <**>, pre­
sentata (***) dal Corrisp. A. B r e s s a n .

Riassunto. — Sulla base di una teoria generalizzata di Meccanica Classica per 
il problema dei Due Corpi, recentemente formulata dall’autore, si considera la questione 
della precessione del perielio dei pianeti, assente nel caso Newtoniano. Si mostra come 
la descrizione di questo fenomeno in tale teoria generalizzata è sostanzialmente equi­
valente a quella offerta dalla Relatività Generale.

1. Introduction

In a recent work [2] I stated a generalized theory .gr* of Classical Mechanics 
for the Two Body problem in which

(z) a weaker axiom for mass than Mach’s one is proposed, which implies 
the rejection of the (full) classical Action and Reaction principle, and

(zz) the well-known Two Body reference frames (^W ), rotationless 
with respect to inertial frames jr), have a certain privileged role, in that the
existence of a generalized energy integral is postulated within these frames.

The usual theory W of Classical Mechanics is a particular case of fî*.
As announced in [2], in the present paper—see N. 3—I study within the 

frame-work of a natural explanation of the possible precessions for the apsidal 
points of the orbit of a particle with respect to the other one, at which the origin 
of a is placed. This explanation of the precession of the perihelion is very 
close to the well known one that is deduced within General Relativity, in the 
Schwarzschild universe.

This work is a trial of explaining a physical phenomenon presently described 
satisfactorily only by General Relativity, on the basis of a classical conception 
of the physical world; the interest in these trials has been recently increased e.g. by 
the works of D. Galletto and his co-workers in Torino on the cosmological field.

The present note is self-consistent on the basis of the theory an outline 
of which can be found in N. 2.

(#) This paper has been worked out within the sphere of activity of the 
research group n. 3 for Mathematical Physics of C.N.R. (Consiglio Nazionale delle 
Ricerche).

(#*) Address: Seminario Matematico, Università di Padova, via Belzoni 7, 35100 
Padova.

Nella seduta del 25 giugno 1982.
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2. Some results from the theory of generalized Classical M echanics

We consider classical physics and regard the motions of inertial spaces and 
inertial frames as known. Let be such a frame. We assume that only the par­
ticles S ( : “ sun ” , Jy1 in [2]) and P (: “ planet ” , P2 in [2]) exist, so that they 
constitute an isolated system.

Here I list briefly the set of axioms for S’*. The axioms substantially dif­
ferent from the usual ones are (i) a weaker axiom for mass than Mach’s one, 
cf. A 2 in P], and (ii) an axiom of existence of a generalized energy integral, 
cf. A 5 in [2]. The axiom of Physical Possibility, A 1 in [2], is omitted, since 
I will not employ it here.

W eak M ass Axiom. For some M , m e R+, if  xm > xm [aM , am] are the posi­
tion [accelerations] of S and P in the inertial frame 01 jr at some instant t, then we 
necessarily have

(2.1) (M aM +  mam) X (x u  —  xm) =  0 .

Note that the Mach’s axiom is obtained by substituting (2.1) with:

(2.1) ' Mam +  mam =  0 .

D yn am ica l la w . In connection with an arbitrary choice of 0 tj  there is a fun­
ction (force) f  such that if, at the instant t , S and P have the positions xM and xm> 
and velocities vu and vm respectively then

(2.2) Mam = /  (*m > *  m 9 Vm , V M)  , rnam =  /  (*m , xm , vM , vm) .

Homogeneous and isotropic properties of inertial spaces are included in 
the following axiom, where ST(9 (ri) denotes the proper orthogonal groups on Rw.

H om ogeneity  an d  Iso trop y . There is a function F : [R3\{ 0 } ]x R 3^ R 3 
for which

(2.3) F (xw — x M i vm— vM) = f ( x M ,x m, vM , vm) ,

where f  is as in (2.2), and, for all (u , w )e  [R3\ { 0}] x R 3 and all Q e (3)

(2.4) QF (u , w) =  F (Qu , Q w ).

By a theorem of Cauchy we obtain the following representation for F :

(2.5) F (u , w) — séu +  0ïvû +  ^ u  A vo ,

where ,^ ,  and ^  are functions of | u | , | w | , and uXiv .  If we assume the
validity of (2.1)' then for F the following (restricted) representation holds:

(2.5)' F (u , w) =  sXu +  0tvo (^ =  0) .
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My intention is to make use of the full representation (2.5) for F. Mach’s axiom 
has been generalized in order to rendei this use possible. From a physical point 
of view the choice (2.1) leads us to reject, in a classical (non relativistic) frame­
work, the full Action and Reaction principle.

In the following I denote by 0l$® (Two Body frame) a reference frame 
whose origin is (always) in S and which is rotationless with respect to inertial 
spaces. Set

(2.6) q =  xm — xm > m*== —— ~— (reduced mass) .IVI -f- m

By the following axiom the frames 01$ ® are, in a some sense, privileged.

E n erg etic  Axiom I f  has the origin in S and has the same orthonormal 
basis {eh}h== 1,2,3 as 01 j , the function $  (q , q), for which the motion of P neces­
sarily fulfils the equation

(2.7) m* q =  g  {q , q) ,

is afforded by a generalized potential V e ^ (2) ([R3\ A ] x R 3 ; R) for some set A 
without internal points, such that the functions (<components of £$?)

(2.8) &== — ---- —  g Ae<r([R3\ A ] x R 3 ;R),  * =  1 , 2 , 3 ,dqA at àqh

have continuous extensions onto [R3\ { 0}]xR 3.
Note that if (2.1)' holds, instead of (2.1), then so does

(2.9) 0? =  F .

In connection with a choice of 01$& let us set

(2.10) L* — m* qf\q {reduced moment of momentum),

and let eoA be the angular velocity of the plane (S , L * , q) with respect to 01$®) 
where L* =  L*/| L* |, q =  qfq, q = \q \>  and còA — o>A/ | coA |.

The following theorem is proved in [2],
Theorem  1. According to the theory based on the above axioms, (i) the 

most general force function (q y q) [F (q , q)] relative to 0t%®\0lj\ is expressed 
by (2.11) [(2.12)] below for some integration constant K e  R and for some function 
U ( q ) e ^ :

(2.11) 3  (q, q) =  — -p- qA q  +  grad U(#),

tX   M -j- m
(2.12) F (q , q) =  — —  qAq +  grad U (q) , where K =  K M __m ;

(ii) with respect to , | L* | is a first integral of the motion of
P : ó? [ L* \jdt =  0;
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(iii) the motions of P compatible with the forces (2.11) have trajectories in 
lying (each) on a fixed conic surface (in that has the vertex at S, the

axis parallel with coA (hence dcaA/d£ =  0) and semi-aperture a, where

a f I KI )
(2.13) a =  a rcc o s |à  x £ |  =  arccos j - ÿ = = —  j .

It easy to note that usual theory is the special case of obtained for 
K =  0, in this case we have cr =  7t/2, i.e. the conic surface reduces to a plane.

The next (additional) axiom PM—i.e. axiom A 6 in [2]—on the orbits of 
P in is reached by qualitative observations; it is a theorem in^~ (where 
K =  0), and is certainly weaker than e.g. the requirement that these orbits should 
be conic.

P la n e  M o tio n s  Axiom (PM). In (with the origin in S) the motion of 
P is plane.

T heorem  2. In To* +  PM
(i) P’s trajectory in is a conic ;
(ii) the central component of $  (q , q) (i.e. parallel with q) is quasi-New­

tonian :

(2.14) 5 ( « . « )  =  - ^ f f A « + ( - T -  +  -— ) « ,

that is (2.11) holds with the potential

(2.15) U (<?) = ---- ----- A  +  const •q 2m f

where K and y are independent real constants.
For K =  0 we obtain Newton’s law.

3. On th e  precession o f  th e  apsidal p o in ts  o f  o rb its  in

It is easy to check that the precession of the apsidal points for the oibits of 
planets is not describable in PM. In fact in this theory P’s orbit in 
belongs to a cone and a plane that are both fixed in and are determined by 
the initial conditions | L* |, K, and y. Therefore let us consider the more general 
theory &*.

We want a determination of the force function $  (q > 4)—cf. (2.11)—for 
which (i) P’s motion (in !%&&) is nearly plane (for | K | < 1), but not exactly 
plane (1), and (ii) the corresponding force function F (q , q) in any inertial fra-

(1) Otherwise no precession can arise, as was shown in gT* +  PM.
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me 0tj> satisfies the hypothesis of linear dependence on masses, e.i. (2.12) with 
K —  h Mm. Remembering the results obtained in +  PM, and in particular 
(2.14), the most natural choice for $  (g , g) compatible with (i) and (ii) is

(3-1) $  (q > 9) =  — -p- qA q  +  grad W (q) ,

with

M Mm
(3.2) K =  A Mm — ---- — , W(q) =  G ^ ^  (y =  — G Mm).M -f~ m q

where G is Cavendish’s gravitation constant and h is another universal constant. 
By (3.1), (2.12) becomes

(3.3)

or

F  (q , q) hM.ni
q A q —

G Mm
r

(3.4) F ( q , q)
G Mm

+  s®A) q , e h_
G '

The latter formula appears easily comparable with the one proposed by Armellini 
in [ l ]  as a correction of Newton’s law

GMm
(3.5) Y { q , q )  =  - ^ - P ~ { \  +  Sq)q ( ? = | f f | ) .

Unlike (3.5), (3.4) admits a generalized energy integral in &%<%.

Let us specialize the system 01% @ =  (S , e1, e2, es} by assuming that e3 =  dòA 
cf. Theorem 1 (iii). In the system of spherical co-ordinates {r , ft , 9} (2) asso­
ciated with 0t%& we have:

(3.6) ft =  g =  const. , & =  0 .

Let us determine the precession angle 9 for the points (if any) where r attains 
a maximum rmax [a minimum rmin]. This precession is a natural analogue of the 
precession of apsidal points for plane orbits.

Let us remember that in spherical co-ordinates q — rq, q =  vq q +  +
+  v<p 9 =  rq +  ré'é' +  rep sin $9 , while q — aq q +  CL& & +  av 9 , where

(3.7) aq =  r — r&2 — r<p2sin2aL.

By (3.6)

(3.8) aq~ r  — rep2 sin2 a .

(2) r — q , & is the colatitude, and 9 is the longitude.
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The vector

(3.9) tu
fi =  « î A «  =  —  L*mT

is the moment of momentum in &&& for the system {S , P}. Then 

(3.10) £  =  mqt\(fr q +  rB# +  rep sin B<p) =  mr2 9 sin oq A 9 ,

so that

(3.11) ? =  ■mr2 sin cr ( ^ = | £ | ) .

Let r =  r (9) represent P’s trajectory. Then

dr
d9 9 =  -

&dr
d9 mr2 sin cr m sin a d9 ( - ) ■

whence

(3.12) /  &  \ 2 d2 / J _ \
\  mr sin cr / d9 2 \  r /

On the other hand, for the radial acceleration aq, we have the kinematic 
relation (3.8) and the dynamic one:

GMm(3.13) mr an (cf. (3.1-2)).

For u — r -1, by (3.11) to (3.13), (3.8) becomes

GMm//2
mr

I  &  Y  2 d 2 U (  J ?  Y  3 • 2
---- :----  u —T T ~ \ -----•----u* sin2 cr,\  m  sm a  J d ep *  \  m  sin c r  /

whence we have the equation 

d2 u(3.14) +  u sin2 cr G Mm3 sin2 cr
d9 J£?2

in u (9), whose general solution is

(3.15) u (9) =  s# ! cos (9 sin a +  ^ / 2) >

The extremal points 9 for u satisfy the equation

du _ . _
(3.16) 0 =  —— (9) =  — sé\  sin cr sin (9 sin a +  s / 2) •

fi ,  R ).

d9

Hence, setting 

(3.17) cpn sin a +  r / 2 =  nn ,
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and assuming e.g. >  0, cpw is a maximum or minimum point for n according 
to whether n is even or odd. Hence the dihedral angle of which the plane 
(S , e3, q) and the vector q (on the cone of semi-aperture a) rotate between two 
passages through the same (generalized) apsidal point is 9 =  cpn+2 — that is

(3.18) w 2 TU
? =  —------sin a

By (2.13) cr =  arc cos | oòAX q \ =  arc cos { | K | / ]/K2 +  (L*)2} , L* =  | L* |, 
whence sin a =  l / f l  +  (K/L*)2 and

(3.19) 9 =  2tc]/1 +  (K/L*)2 .

We have the representation

(3.20) » - 2 - [ l  +  4 - ( ^ ) l  +  o [ ( ^ ) l lim
^->o

Let us introduce the {revolution) precession angle A9 :

(3.21) A<p =  9 —  2 tu ,

whence, up to 0 [(K/L*)2], we have

(3.22) A9 =  tu (K/L*)2.

By (3.2)! and (3.9)2, (3.22) becomes

(3.23) Ay =  7t/taM2m2 J r  '

Thus we have obtained an expression for the precession angle very close 
to the well known one that is deduced by a suitable approximation procedure 
on the basis of General Relativity—cf. [3], §98— :

(3.24) A9GR =
67rG2M 2m2 1

T 2 l é 2 (c: speed of light in vacuo).

It is clear that for M > my (M — m)2 M~2 ^  1. By identifying the uni­
versal constant h with Glc, (3.23) becomes

A9 = 6 7u2 G2 M2 ni* /M — m V  1
\ M / & 2 ’

(3.25)
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which describes the precession of Mercury's perihelion as well as the analo­
gues (difficult to observe) for the other planets, with a precision comparable 
the one of the relativistic formula (3.24)(3).
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