ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

PAOLO LIPPARINI

Some results about compact logics

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **72** (1982), n.6, p. 308–311. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1982_8_72_6_308_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Logica matematica. — Some results about compact logics. Nota di Paolo Lipparini, presentata (*) dal Socio G. Zappa.

RIASSUNTO. — Nell'ambito della Teoria dei Modelli Astratta è possibile dimostrare che una logica compatta L è univocamente determinata dalla sua relazione di L-elementare equivalenza (Teorema 1). Si enunciano poi alcuni risultati sulle logiche massime correlate a certe relazioni di equivalenza e sulle logiche compatte generate da qualche sistema di Fraissé-Ehrenfeucht.

The aim of this note is to announce some results of the author in Soft Model Theory: their proofs will appear in [3].

Soft (or Abstract) Model Theory studies the extensions of first-order logic $(L_{\omega\omega})$: in particular two kinds of problems are taken into account: i) the research for extensions of first-order logic having some of its good model-theoretical properties (for example satisfying compactness, Craig interpolation theorem, Löwenheim–Skolem theorems and so on); and ii) the characterization of existing logics as maximal with respect to certain properties.

For example, the first non trivial theorem of Abstract Model Theory, proved by Lindström in 1966 [2], says that $L_{\omega\omega}$ is the only compact logic satisfying the downward Löwenheim–Skolem theorem, so that it is maximal among those having these properties. Naturally, this gives negative answers to problem i); nevertheless, by a result of Shelah [11], compact proper extensions of $L_{\omega\omega}$ do exist.

These are only examples of the nature of Soft Model Theory: many other interesting results and applications can be found in the literature (see [1]). In particular some logical concepts are given a purely algebraic characterization: in [6] and [4] it is proved that: i) compactness is equivalent to the joint embedding property, and also to the amalgamation property for L-elementary embeddings; ii) compactness+Craig interpolation is equivalent to the Robinson property. (In passing we remark that the Robinson property has many useful consequences, see [7], [8], [9]).

The strength of these characterizations can be seen from the following example: Lindström proved that $L_{\omega\omega}$ is the only compact logic L generating \equiv as L-elementary equivalence. But any logic generating \equiv must satisfy the joint embedding property in view of i) above. So, the quoted proposition can be improved to: $L_{\omega\omega}$ is the only logic generating \equiv .

^(*) Nella seduta del 25 giugno 1982.

In [7] similar theorems results are obtained for compact logics satisfying Craig in place of $L_{\omega\omega}$; but perhaps these results can be applied only to $L_{\omega\omega}$, since, as far as we know, Friedman's fourth problem is still open (the research for compact proper extensions of $L_{\omega\omega}$ satisfying Craig). Nevertheless our Theorem 1 says that the Craig assumption is unnecessary, and this makes the result 'nonempty'. For example, a concrete consequence is that there is no logic $L \neq L_{\omega\omega} (Q^{ef\omega})$ such that $\equiv_L = \equiv_{L_{\omega\omega}} (Q^{ef\omega})$.

The fact that algebraic properties of equivalence relations can be useful for the study of logics has led to the following problem: characterize those equivalence relations which are generated by some logic (see [7], [10]). A rather complete answer for Robinson logics is given in [9]; in proposition 1 we extend some of the results of the latter paper to any countably generated logic.

Theorems 1 and 3 support the author's belief that, with few more technical efforts, many theorems about compact logics satisfying Craig can be proved assuming only compactness.

All notations and definitions are taken from [5], [9], [7]; we use the definition of logic of this last paper.

My thanks go to P. Mangani, my Research Director, and to D. Mundici, for his valuable help.

Theorem 1. If L, M are logics such that $\operatorname{Stn}_{L}(\tau)$ is a set for any τ , \equiv_{M} is coarser than \equiv_{L} , and L is compact, then $M \leq L$. Moreover, if $\equiv_{M} = \equiv_{L}$, then M = L.

DEFINITION 1. Let \sim be any equivalence relation on the class of all structures. We say that a logic L respects \sim iff whenever $\mathfrak{A} \sim \mathfrak{B}$ are two models of type τ , and $\varphi \in \operatorname{Stn}_{L}$ has type $\tau \cup \{c_{1}, \dots, c_{n}\}$, if we add to \mathfrak{A} and \mathfrak{B} a new relation R defined by:

$$R(c_1, \dots, c_n) \Longleftrightarrow \varphi$$

then the two expanded models are also ~-equivalent.

THEOREM 2. Let \sim be an equivalence relation finer than \equiv and closed under renaming and reduct. If L and M respect \sim , then L \cup M respects \sim . Thus, there exists the largest logic respecting \sim . Moreover, if L \equiv L $_{\omega\omega}(Q_i)_{j\in I}$, then there exists the largest logic M of the form $M = L_{\omega\omega}(Q_j)_{j\in J}$ such that $\equiv_L = \equiv_M$.

It can be proved that if \sim has Robinson, then L respects \sim if \equiv_L is coarser than \sim , so Theorem 2 generalizes parts of Theorem 5.5 of [7] (see also Remarks 6.10).

DEFINITION 2. A FE-system satisfies the expansion property if, whenever $\mathfrak{A} \simeq_{\tau}^{m+n} \mathfrak{B}$, $\tau' = \tau \cup \{\bar{c}\}$, U is a union of classes of $\simeq_{\tau'}^n$, then $(\mathfrak{A}, R) \simeq_{\tau \cup \{R\}} (\mathfrak{B}, R)$, where R is defined in \mathfrak{A} by

$$R\bar{a} \iff \langle \mathscr{A}, \bar{a} \rangle \in U$$
,

and similarly for B.

PROPOSITION 1. For any \sim , there is a FE-system satisfying expansion and generating \sim if there is a countably generated logic L with $\equiv_{\rm L} = \sim$.

THEOREM 3. For any \sim , the following are equivalent:

- i) $\sim = \equiv_L$ for some countably generated compact logic;
- ii) $\sim = \equiv_L$ for exactly one logic L, which is compact and countably generated;
- iii) \sim has the joint embedding property and is generated by some FE-system satisfying expansion;
- iv) \sim has the joint embedding property and is generated by exactly one FE-system, which satisfies expansion.

ADDED IN PROOF (DECEMBER 1982). Other results are:

- i) $L \cup M$ is $(\lambda, \mu)_{\nu}$ -compact iff $S_{\mu}(\lambda)$ is not ν -atomically characterizable by $\equiv_L \cap \equiv_M$ (cf. [3]; $(\lambda, \mu)_{\nu}$ -compactness is defined as $(\lambda, \mu)^*$ -compactness in [4], but requiring $|\tau(\Sigma \cup \Sigma_1)| < \nu$).
- ii) If $\equiv_L \subseteq \equiv_M$, OC $(M) \le \nu$, L is (λ, ω) -compact and $|\operatorname{Stn}_L(\tau)| \le \lambda$ for $|\tau| < \nu$, then $M \le L$.
- iii) If OC (L) $\leq \lambda$, and \equiv_L satisfies the Robinson property ([8]) with the restriction that $|\tau| \leq \lambda$ and $|\tau' \setminus \tau|$, $|\tau'' \setminus \tau| < \nu$, then L is $(\lambda, \omega)_{\nu}$ -compact.
- iv) If L is compact and generated by a set of quantifiers, then L satisfies Beth's Definability Theorem if \equiv_L has the definability property ([3]).
- v) If D is an ultrafilter, α an ordinal, and $\mathfrak{A} \sim \mathfrak{B}$ iff $\prod_D^\beta \mathfrak{A} \cong \prod_D^\gamma \mathfrak{B}$ for some β , $\gamma < \omega^\alpha$ (where $\prod_D^{\ 0}\mathfrak{A} = \mathfrak{A}$, and $\prod_D^\beta \mathfrak{A} = \bigcup_{\gamma \in \beta} \prod_D (\prod_D^\gamma \mathfrak{A})$), then \sim is a Robinson equivalence relation. If ω is the only measurable cardinal and $\sim = \equiv_L$, then $\sim = \cong$.

BIBLIOGRAPHY

- [1] K. J. Barwise (1974) Axioms for abstract model theory, «Ann. Math. Logic», 7, 221-265.
- [2] P. LINDSTROM (1966) First order predicate logic with generalized quantifiers, « Theoria », 32, 186-195.
- [3] P. LIPPARINI Duality for compact logics and substitution in abstract model theory, preprint.
- [4] J. A. MAKOWSKY and S. SHELAH, Positive results in abstract model theory, preprint.
- [5] J. A. Makowsky, S. Shelah and S. Stavi (1976) Δ –logics and generalized quantifiers, « Ann. Math. Logic. », 10, 155–192.
- [6] D. Mundici (1982) Interpolation, compactness and JEP in soft model theory, « Arch. Math. Logik », 22, 61-67.

- [7] D. Mundici (1982) Duality between logics and equivalence relations, «Trans. Amer. Math. Soc. », 270, 111-129.
- [8] D. Mundici (1981) An algebraic result about soft model theoretical equivalence relations with an application to H. Friedman's fourth problem, «J. Symbolic Logic», 46, 523-530.
- [9] D. Mundici (1981) Variations on Friedman's third and fourth problem, in Proceedings of the International Conference: « Open Days for Model Theory and Set Theory» (H. RASIOWA and W. MAREK Chair.), Warsaw Sept.
- [10] M. E. NADEL (1980) An arbitrary equivalence relation as elementary equivalence in abstract logic, «Z. Math. Logik Grundlagen Math.», 26, 103-109.
- [11] S. Shelah (1975) Generalized quantifiers and compact logic, «Trans, Amer. Math. Soc. », 204, 342-364.