Emilio Acerbi, Giuseppe Buttazzo, Nicola Fusco

Semicontinuity in L^∞ for polyconvex integrals

<http://www.bdim.eu/item?id=RLINA_1982_8_72_1_25_0>
Calcolo delle variazioni. — *Semicontinuity in* L^∞ *for polyconvex integrals* (*). Nota di EMILIO ACERBI (**), GIUSEPPE BUTTAZZO (**), and NICOLA FUSCO (***) presented (*) by Socio C. MIRANDA.

Riassunto. — Viene studiata la semicontinuità rispetto alla topologia di L^∞ ($\Omega ; \mathbb{R}^m$) per alcuni funzionali del Calcolo delle Variazioni dipendenti da funzioni a valori vettoriali.

INTRODUCTION

The first results about the semicontinuity of functionals of the type

\begin{equation}
\int_\Omega f(x, u(x), Du(x)) \, dx,
\end{equation}

where u is a vector-valued function, are due to Morrey [9] who proved that under certain regularity assumptions on the integrand f, the functional (1) is weakly* sequentially l.s. (lower semicontinuous) on $W^{1,\infty} (\Omega ; \mathbb{R}^m)$ if and only if for all (x, s) the function $\xi \to f(x, s, \xi)$ is quasi-convex:

DEFINITION 1. A continuous function $\phi : \mathbb{R}^{nm} \to \mathbb{R}$ is quasi-convex if for every open subset Ω of \mathbb{R}^n, for every $\xi \in \mathbb{R}^{nm}$ and every function $w \in C^1_0 (\Omega ; \mathbb{R}^m)$

\[\phi (\xi) \operatorname{meas} (\Omega) \leq \int_\Omega \phi (\xi + Dw (x)) \, dx. \]

The result of Morrey was generalized by Meyers [8] (in the case of integrals of any order) and by Acerbi and Fusco [1] who showed that if f is a Carathéodory function such that

\begin{equation}
0 \leq f(x, s, \xi) \leq a(x) + C (|s|^p + |\xi|^p)
\end{equation}

($p \geq 1$),

where a is non-negative and locally summable on \mathbb{R}^n, and $C > 0$, then the functional (1) is weakly l.s. on $W^{1,p} (\Omega ; \mathbb{R}^m)$ if and only if the function $\xi \to f(x, s, \xi)$ is quasi-convex.

(*) This work has been supported by GNAFA (CNR).

(**) Scuola Normale Superiore – Piazza dei Cavalieri, 7 – 56100 Pisa.

(***) Istituto di Matematica – via Mezzocannone, 8 – 80100 Napoli.

(****) Nella seduta del 9 gennaio 1982.
Finally, we remark that several semicontinuity theorems have been also proved for convex functionals, even more general than the functional (1) (see e.g. [6]).

In the applications to nonlinear elasticity, one usually finds a particular class of quasi-convex functions, namely the class of polyconvex functions (see Ball [2], [3], Dacorogna [5]):

Definition 2. A function \(\phi : \mathbb{R}^{mn} \to \mathbb{R} \) is polyconvex if there exists a convex function \(\psi \) such that for every \(m \times n \) matrix \(A \)

\[
\phi(A) = \psi(XA),
\]

where \(XA \) denotes the vector whose components consist of all the subdeterminants of the matrix \(A \).

We remark here that if \(\xi \to f(x, s, \xi) \) is for all \((x, s)\) a non-negative polyconvex function, the semicontinuity theorem proved in [1] holds without the growth condition (2).

In general, if \(1 \leq p < \infty \), the integrals of polyconvex functions are not l.s. with respect to the topology of \(L^p(\Omega, \mathbb{R}^m) \) as one can already see for the functional \((m = n) \)

\[
\int_{\Omega} |\det D\phi(x)| \, dx.
\]

For it is possible to construct a sequence \((u_h)\) such that \(\det D\phi = 0 \), but \((u_h)\) converges in \(L^p \), for every \(p < \infty \), to the function \(u(x) = x \). Nevertheless this functional turns out to be l.s. with respect to the topology of \(L^\infty_{\text{loc}}(\Omega; \mathbb{R}^n) \).

This example shows why for the integrals of polyconvex functions it is not interesting to study the lower semicontinuity with respect to the topology of \(L^p(\Omega, \mathbb{R}^m) \) (with \(p < \infty \)).

On this subject the situation in the scalar case is completely different. Indeed when \(u \) is a real-valued function and \(f \) satisfies (2), the semicontinuity of the functional (1) with respect to the topology of \(L^\infty(\Omega) \) is equivalent to the semicontinuity in the topology of \(L^p(\Omega) \), at least on \(W^{1,p}(\Omega) \cap L^\infty(\Omega) \) (see Carbone-Sbordone [4]).

In this paper we state some results on the semicontinuity in the topology of \(L^\infty_{\text{loc}}(\Omega; \mathbb{R}^n) \) of certain integrals of polyconvex functions.

By the previous remark it is clear that the results stated here generalize the semicontinuity theorems proved in the scalar case in [10], [11]. At any rate they apply to the important class of parametric integrals (widely studied in [7], [10]) and to the most representative examples of polyconvex integrals occurring in nonlinear elasticity.
Let \(\Omega \) be an open subset of \(\mathbb{R}^n \); if \(u \) is a function from \(\Omega \) to \(\mathbb{R}^m \), let \(Du \) denote the matrix of its derivatives, and let \(X^0 u \) denote the vector whose \(\binom{m}{n} \) components are the subdeterminants of \(Du \) of order \(n \). In the following theorem we specialize to the case \(m = n + 1 \).

Theorem 1. Let \(f: \Omega \times \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \to [0, + \infty) \) satisfy:

1. for every \((x, s) \in \Omega \times \mathbb{R}^{n+1}\) the function \(\xi \mapsto f(x, s, \xi) \) is convex and lower semicontinuous, and \(f(x, s, 0) = 0 \);
2. for every \(\Sigma \subset \subset \Omega \times \mathbb{R}^{n+1} \) there exists a continuous function \(\omega_\Sigma: \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+ \), vanishing in \((0, 0)\), such that for every \((x, s), (y, t) \in \Sigma \) and every \(\xi \in \mathbb{R}^{n+1} \)

\[
| f(x, s, \xi) - f(y, t, \xi) | \leq \omega_\Sigma (|x - y|, |s - t|) [1 + f(x, s, \xi)].
\]

Then the functional \(\int f(x, u(x), X^0 u(x)) \, dx \) is l.s. on the space \(W^{1,n}_\text{loc} (\Omega; \mathbb{R}^{n+1}) \cap C(\Omega; \mathbb{R}^{n+1}) \), endowed with the topology of \(L^\infty_\text{loc} (\Omega; \mathbb{R}^{n+1}) \).

An interesting example of integrand satisfying (1), (2) is

\[
f(x, s, \xi) = a(x, s) \phi(\xi)
\]

where \(\phi \) is convex and lower semicontinuous, \(\phi(0) = 0 \), and \(a \) is a continuous function with some positive lower bound.

We remark that the foregoing result is still valid for the functional

\[
\int f(x, u(x), \det Du(x)) \, dx,
\]

where \(u \) is a function from \(\Omega \) to \(\mathbb{R}^n \) and \(f: \Omega \times \mathbb{R}^n \times \mathbb{R} \to [0, + \infty] \) satisfies conditions analogous to (1), (2).

More generally, one may consider functionals of the type

\[
\int f(x, u(x), X^+ u(x)) \, dx,
\]

where \(X^+ u \) denotes the vector whose components are the absolute values of all the subdeterminants of \(Du \); in addition let \(r(n, m) \) denote the dimension of the vector \(X^+ u \).

Theorem 2. Let \(f: \Omega \times \mathbb{R}^m \times \mathbb{R}^{r(n,m)}_+ \to [0, + \infty] \) satisfy:

1. for every \((x, s) \in \Omega \times \mathbb{R}^m \) the function \(\xi \mapsto f(x, s, \xi_+) \) is convex and lower semicontinuous (here \(\xi_+ \) denotes the vector of the absolute values of the components of \(\xi \)).
for every $\Sigma \subset \subset \Omega \times R^m$ there exists a continuous function $\omega_\Sigma : R_+ \times R_+ \to R_+$, vanishing in $(0, 0)$, such that for every $(x, s), (y, t) \in \Sigma$ and for every $\xi_+ \in R^{(n,m)}_+$

$$|f(x, s, \xi_+) - f(y, t, \xi_+)| \leq \omega_\Sigma(|x - y|, |s - t|) [1 + f(x, s, \xi_+)].$$

Then the functional $\int f(x, u(x), X^+ u(x)) \, dx$ is l.s. on the space $W^{1,n}_{loc} (\Omega ; R^m) \cap C(\Omega ; R^m)$, endowed with the topology of $L^\infty_{loc}(\Omega ; R^m)$.

REFERENCES