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Fisica-m atem atica. — On an inversion formula of certain Laplace 
transforms in dissipative wave propagation <*). Nota di P asquale  R e n n o , 

presentata (**) dal Socio D. G r a f f i.

R iassunto. — Si determina una formula di inversione di alcune trasformate di 
Laplace che intervengono nell’analisi formale di problemi al contorno relativi ad una classe 
di mezzi dissipativi. Le espressioni esplicite proposte definiscono funzioni analitiche a 
decrescenza rapida dotate di numerose proprietà di massimo, utili anche all’analisi di 
problemi unilaterali.

0. -  The inversion of Laplace transforms that occur in the formal analysis 
of problems related to the linear wave propagation in dissipative media is often 
a problematic question. A typical, noticeable example is given by the dynamic 
equations of isothermal, isotropic, linear viscoelasticity for threedimensional
motions [1] 

(0.1)

t

J tu  = j  [X (t — t )  +  (J* (t — t )]  9T V V • M dx +
— oo 

t

+  j  n ( t  — t )  9t V2 u dT — p 3( U =  — f ( x , t )
— OO

where u (x , t) {x e R3 , t >  0) is the displacement field, p denotes the mass 
density, while X (£) and p. (t) are the appropriate relaxation functions. The 
vector /  represents a volume density of prescribed forces.

lyven though memory functions as those typical of a standard linear solid 
are considered (n. 1), one obtains a class of Laplace transforms which is any
thing but a simple task. In this case, in fact, the fundamental solution E3 (or Ex) 
of the threedimensional (or unidimensional) J t  operator, or the kernel E0 which 
resolves the half-space problem related to (0.1), are formally defined by symbolic 
relations such as (see [2] p. 19):

fcii l/ s
(0.2) set E, (x , t) = g j  {X ,s) e~ ,*1* ^  , ( > = 0 , 1 ,  3)

where ££t is the Laplace operator with respect to time and s is the parameter 
of the ^-transformation. Furthermore gj is an algebraic ££-transform function

(*) Work performed under auspices of Italian Research Council (G.N.F.M. of 
C.N.R.).

(#*) Nella seduta del 12 dicembre 1981.
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which depends on the boundary-value problem in question and a , ß , k (>  0) 
are appropriate constants.

Formulae such as (0.2) occur in linearized thermochemistry also [3].
Numerous formal and approximate evaluations of Ê  by means of the 

steepest-descent methods are already known (see e.g. [3]), but they are not 
rigorous and do not give an exhaustive behaviour of the original function. On 
the other hand, the computation of Ê - by means of series expansions or integral 
representations often leads to very untractable expressions [4],

Recently, [5, 6],'we succeeded in obtaining an explicit rigorous inversion 
formula for the fundamental solution E3 in terms of a definite integral of modi
fied Bessel functions which has numerous basic properties; so, e.g. we recall 
that E3 is a C°° rapidly decreasing and never negative function and that the 
associated distribution is a tempered positive Radon measure [5]. By means 
of these properties, the distributional and classical initial value problems in 
the threedimensional case were rigorously discussed in [5].

The aim of this note is to generalize the inversion formula stated in [5], 
in order to obtain other numerous useful inverse transforms of (0.2) according 
to various g f s. So, the half-space problem, the unidimensional Cauchy problem, 
as well as other boundary value problems for a standard linear solid, can be 
explicitly solved. Furthermore, some remarkable maximum properties of the 
fundamental solution Ex related to the unidimensional case are enunciated 
(n. 2). On this subject we observe that the explicit expression for Ex characte
rizes the Riemann function which solves the general Cauchy problem when 
the initial data are prefixed on an arbitrary curve t =  t(x) of the atf-plane. 
Consequently, by means of these properties of Ex one obtains the explicit 
solution of the general Cauchy problem and appropriate maximum principles 
which are of primary importance in order to analyse also unilateral problems 
for the equation we deal with [7].

1. -  If the Helmholtz resolution is employed to represent the displacement 
vector as

(1.1) ■:-t t=VxV- + V $ , '

where <!>(#,*)(#€ R3) is a scalar potential afid A { x , t) is a vector potential, 
then to solve (0.1) it suffices to analyse an equation such as

t

(1.2) I S (* — T) d* V2 » dr +  f ( x  , t) =  p d2t v .
— 00

If u =  V xA  then £ = A  +  2jji; when v —  Vd> then £ =  [/.. Obviously, attention 
must be paid to the boundary-initial data and to the source term /.

Thus, as it is well known [1], we see that the scalar potential ^ governs 
the propagation of irrotational waves while the vector potential A governs the 
propagation of shear waves.
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Consider now a standard linear solid whose relaxation function is 

C1-3) g ( t)= g (p o )  +  [*(0)— g(oo)]e~tls,

where s is a relaxation time and g (oo) < g ( 0). By (1.2)-(1.3) one has

(1.4) edt (d] V — a\ V2 v) +  df v — al V2 v = / *  (x , t)

with /* =  p“1 (edt + 1 ) /  and

(1.5) a\ =  p-1 g (0) , al =  p-1^ (oo), (al <  a l) .

The equation (1.4) governs also the propagation of acoustic waves in a 
chemically reacting mixture of real gases [3] ; in that case a1 is the frozen sound 
speed, a0 is the equilibrium sound speed, while s is a characteristic time of the 
chemical reaction. However, in all the usual physical systems al <  al results.

Without loss of generality, the strictly hyperbolic operator of (1.4) can 
be always given the form

(1.6) L 3 =  ^ ( a ? _ V 2) +  9 ? - . 2V2,

with c2 =  allai <  1. In the unidimensional case, obviously it is

(1.7) 1^ =  63, (a* — dl) +  3Î — t 2 a*.

By means of the Fourier and Laplace's operators, it is easy to verify 
that the fundamental solutions E3 and E1 of L3 and Lx are formally defined 
by the symbolic relations ( | x | =  r) :

(1.8) Ê3(x ,s): 4 nr (es +  c2) Ex ( x , $) 2 <7 (ss -f- c2)

with cr =  s [(ss +  l)l(es +  c2) f , and Ê̂ - =  SPt E^. Furthermore, when the 
half-space (or radiation) problem is considered, the inversion formula for

(1-9) Fo (r , s) — e ~ r a  e

r[s+(l-c2)/2s]

must be established.
Therefore, to solve explicitly these problems as well as other boundary 

value problems related to the L3 and Lx operators, we now generalize an 
inversion formula stated in [5].

2. -  Let a , p , p., v be four arbitrary (real or complex) parameters and 
r e [ 0 , * ]  areal  variable; let 1̂  denote the modified Bessel function of the
first kind. For brevity we put:

(2.1) - ß +  a 
2 £

ß — a 
■ ~ T ’ 2 s

(2.2) F(i,v (r > 0  =  e~yt+Sr

=  b

t—r

a
£

b8 =  a
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with

(2.3) / „  =  ( ] / — ) “I»(2y « >  ( / ' 7 1 7 “ ) ’ I. (» )(< + r) ( l - r - i ) ). 

if

(2.4) Q — {(r , t) g R2 : 0 <  r < t , t >  0} , 

the following lemma holds:

L emma 2.1. V(^,v) ,  the are C°°(£2) functions never negative in £i
which represent classical solutions of the equation Lx u —  0 (with ol — c2, ß =  1,
I x I =  r).

Furthermore, if q =  [(s -f a/s) (s +  ß/s)]̂  and H (£) denotes the Heavi
side function, the inversion formula obtained in [5] can be thus generalized.

L emma 2.2. In the half-plane Me (s) >  max Me (—  a/s , — ß/s) the Laplace 
integral J?t H ( t — r) F^v converges absolutely and one has:

/o cp T-J (+ „A T?  9^+1 A—V H“ Y ?) rs [/ — ^(2.5) «Sr« H (£ *0 *V,v — 2 b ^  § _j_ ^ +1 * ' ss+a »

provided that both Me(y) and Me(y) exceed — 1.

By means of this formula, and of other similar which are meaningful though 
Me ((a) or Me (v) don’t exceed — 1, various Laplace transforms such as (0.2) 
can be inverted. In particular the explicit inverse ^-transforms of the E i , 
E3, F0 functions defined in (1.8)—(1.9) can be deduced as follows. If ol =  c2 
and ß =  l, then in (2.1) one has

(2.6) T
l +  c*
~ 2 T ~ b 1 — c2 

2 £ s

If, for brevity, one puts

(2.7) y) =  (£/2) { t - r )  , i  =  2 [ b ì r { t - r ) f  , co =  b ( t * - r * f ,

(2.8) T'a (r >t) =  s_1 e~‘(t+Sr X
1

X [lo (co) +  [ [4 r)V I0 (lv) +  U, (lv)] I0 (co y r = l ? )  e1»' d«] 
0

t

Fi (r , t) = j  Fs (s , t) dz , F„ (r , t) =  (tdt +  c2) Fs ,
r

(2.9)
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accordingly [5] it is possible to prove that:

A) The fundamental solution E3 of L3 operator is

(2.10) E3 {x , t) —  (4n I x I)-1 H (t — | x |) F3 (| x | , t) x e R3

where F3 is the C°° (ti) function defined in (2.8).

B) The fundamental solution Ej of Lj operator is

(2.11) Ex \x  , t) =  (1/2) H (t — I  * I )  F, ( I  x I  , t) x e R

where Fj is the C°° (Ü) function defined in (2.9)j.

C) The kernel E0 of the half-space problem is the distribution

(2.12) E0 (x , t) =  e~bx 8 (t — x) +  H (t — x) F0 (x , t) x e R 1

where 8 is the Dirac measure in R and F0 is the C°° (Q) function defined 
in (2.9)2.

To state some maximum principles for the solution of boundary value 
problems related to L3 and operators, we observe that by means of 
recurrence’s formulae it can be proved

Lemma 2.3. The Ffs  {j —  0 , 1 ,  3) are C00 (Q) functions never negative 
in Q. Furthermore, everywhere in Q, one has:

^  Fx >  0 , dr Fx <  0 , (edt +  c*) F, >  0 (/ =  1 , 3)

(2.13) dr (sdt +  ^2) Fi ^  0 , (zdt +  1) Fj >  0

[s (dt —  3y) +  Fi >  0 .

Remark 2.1. The F^}V’s are rapidly decreasing functions [5, 6] ; then, ri
gorous estimates of various physical phenomena such as diffusion, asymptotic 
behaviour and singular perturbations can be obtained by means of the formulae 
analysed. Such questions will be dealt with successively (for an outline see [8]).
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