ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

Takashi Noiri

A Note on Regular-closed Functions

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **71** (1981), n.5, p. 77–80.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1981_8_71_5_77_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1981.

Topologia. — A Note on Regular-closed Functions. Nota di TA-KASHI NOIRI presentata ^(*) dal Socio E. MARTINELLI.

RIASSUNTO. — Se X ed Y sono spazi topologici, una funzione $f: X \rightarrow Y$ è detta regolarmente chiusa [5] se essa trasforma ogni insieme regolarmente chiuso di X in un insieme chiuso di Y. Si dimostra che una funzione regolarmente chiusa $f: X \rightarrow Y$ risulta chiusa se X è normale.

1. INTRODUCTION

In [5], P. E. Long and L. L. Herrington have defined a function $f: X \to Y$ to be *regular-closed* if for each regular closed set A of X, f(A) is closed in Y and they have obtained numerous properties of such functions. In [8], regularclosed functions are called *almost-closed*. The purpose of the present note is to improve some of the theorems given in [5]. Throughout the present Note, spaces will always mean topological spaces on which no separation axioms are assumed unless explicitly stated and $f: X \to Y$ will denote a function (not necessarily continuous) f of a space X into a space Y. Let S be a subset of a space X. The closure of S and the interior of S in X are denoted by $Cl_X(S)$ and $Int_X(S)$, respectively. A subset S of X is said to be *regular closed* (*regular open*) if $Cl_X(Int_X(S)) = S$ (resp. $Int_X(Cl_X(S)) = S$).

2. Regular-closed functions

A subset S of a space X is said to be *semi-open* [4] if there exists an open set U of X such that $U \subset S \subset Cl_X(U)$. The family of all semi-open sets in X is denoted by SO(X). A function $f: X \to Y$ is said to be *semi-continuous* [4] if for each open set V of Y, $f^{-1}(V) \in SO(X)$. We shall begin by giving a useful characterization of regular-closed functions.

THEOREM 2.1. A function $f : X \to Y$ is regular-closed if and only if $Cl_Y(f(A)) \subset f(Cl_X(A))$ for each $A \in SO(X)$.

Proof. Necessity. Suppose that f is regular-closed and $A \in SO(X)$. By Theorem 1 of [4], $A \subset Cl_X(Int_X(A))$ and $f(Cl_X(Int_X(A)))$ is closed. Therefore, we have $Cl_Y(f(A)) \subset f(Cl_X(A))$.

Sufficiency. Let A be a regular closed set of X. Then $A \in SO(X)$ and, by hypothesis, $Cl_Y(f(A)) \subset f(Cl_X(A)) = f(A)$. Therefore, f(A) is closed and hence f is regular-closed.

(*) Nella seduta del 21 novembre 1981.

6. - RENDICONTI 1981, vol. LXXI, fasc. 5.

The following theorem is an improvement of Theorem 2.20 of [5].

THEOREM 2.2. Let $f : X \to Y$ be a regular-closed function. If $A \in SO(X)$ and there exists a $B \subset Y$ such that $A = f^{-1}(B)$, then $f | A : A \to B$ is regularclosed.

Proof. Let $U \in SO(A)$. Since $A \in SO(X)$, by Theorem 1 of [6], $U \in SO(X)$ and hence $\operatorname{Cl}_Y(f(U)) \subset f(\operatorname{Cl}_X(U))$ by Theorem 2.1. Therefore, we have $\operatorname{Cl}_B((f|A)(U)) = \operatorname{Cl}_Y(f(U)) \cap B \subset f(\operatorname{Cl}_X(U)) \cap B = f(\operatorname{Cl}_X(U) \cap A) = f(\operatorname{Cl}_A(U))$. Therefore, it follows from Theorem 2.1 that $f \mid A : A \to B$ is regular-closed.

COROLLARY 2.3. If $f: X \to Y$ is regular-closed and semi-continuous, then for each open set B of $Yf | A : A \to B$ is regular-closed and semi-continuous, where $A = f^{-1}(B)$.

Proof. Let B be open in Y. Since $A = f^{-1}(B) \in SO(X)$, it follows from Theorem 2.2 that $f \mid A : A \to B$ is regular-closed. Let V be an open set of B. Since B is open in Y, so is V and $f^{-1}(V) \in SO(X)$. By Theorem 6 of [4], $f^{-1}(V) = (f \mid A)^{-1}(V) \in SO(A)$. Therefore, $f \mid A$ is semi-continuous.

A function $f: X \to Y$ is said to be almost-continuous $(\theta$ -continuous) [8] if for each $x \in X$ and each open set V of Y containing f(x), there exists an open set U of X containing x such that $f(U) \subset \operatorname{Int}_{Y}(\operatorname{Cl}_{Y}(V))$ (resp. $f(\operatorname{Cl}_{X}(U)) \subset$ $\subset \operatorname{Cl}_{Y}(V)$). It is well known that every almost-continuous function is θ -continuous but the converse is not true in general [3, 8]. In Theorem 2.18 of [5], it has been shown that a function of an H-closed space into a Hausdorff space is regular-closed if the graph function is almost-continuous and almost-open. This theorem may be considerably sharpened as follows:

THEOREM 2.4. Let $f : X \to Y$ be a function of a quasi H-closed space X into a Hausdorff space Y. If the graph function $g : X \to X \times Y$ is θ -continuous, then f is regular-closed.

Proof. The following results imply that f is regular-closed. A function $f: X \to Y$ is θ -continuous if and only if the graph function $g: X \to X \times Y$ is θ -continuous [7, Theorem 2]. Every θ -continuous function of a quasi H-closed space into a Hausdorff space is regular-closed [1, Theorem 3.2].

3. CLOSED FUNCTIONS

In this section we give some sufficient conditions for a regular-closed function to be closed. For a function $f: X \to Y$, the subset $\{(x, f(x)) \mid x \in X\}$ of the product space $X \times Y$ is called the *graph* of f and is denoted by G(f). In [5, Theorem 2.22], it has been shown that if X is a normal space and $f: X \to Y$ is a regular-closed surjection with closed point inverses, then f is closed. The following theorem shows that the condition of f "surjection with closed point inverses" in the previous theorem can be dropted. LEMMA 3.1 (Fuller [2]). Let $f: X \to Y$ be a function with a closed graph. If K is a compact set of X(Y), then f(K) (resp. $f^{-1}(K)$) is closed in Y (resp. X).

THEOREM 3.2. If X is a normal space and $f: X \rightarrow Y$ is a regular-closed function, then f is closed.

Proof. Let A be a closed set of X and $y \in Y - f(A)$. First, we suppose that $y \notin f(X)$. Since X is regular closed in X, f(X) is closed in Y. Put V == Y - f(X), then V is an open set of Y such that $y \in V$ and $V \cap f(A) = \emptyset$. This implies that $y \notin \operatorname{Cl}_Y(f(A))$. Next, if $y \in f(X)$, then $f^{-1}(y) \neq \emptyset$ and $f^{-1}(y) \cap$ $\cap A = \emptyset$. Since f is regular-closed, by Corollary 2.14 of [5], G(f) is closed and $f^{-1}(y)$ is closed in X by Lemma 3.1. Since X is normal, there exist disjoint regular open sets U_y and U_A such that $f^{-1}(y) \subset U_y$ and $A \subset U_A$. By Lemma 2.2 of [5], there esists an open set V of Y such that $y \in V$ and $f^{-1}(V) \subset U_y$. Therefore, we have $V \cap f(A) = \emptyset$ and hence $y \notin \operatorname{Cl}_Y(f(A))$. Consequently, we obtain $\operatorname{Cl}_Y(f(A)) \subset f(A)$ for any closed set A of X. This shows that f is closed.

COROLLARY 3.3 (Long and Herrington [5]). Normality is preserved under continuous regular-closed surjections.

Proof. It is well known that normality is preserved under continuous closed surjections. The proof follows from Theorem 3.2.

THEOREM 3.4. If X is a regular space and $f: X \rightarrow Y$ is a regular-closed functions with compact point inverses, then f is closed.

Proof. The proof is similar to that of Theorem 3.2 and is thus omitted.

THEOREM 3.5. If X is a compact space and $f: X \to Y$ is a regular-closed function, then f is closed.

Proof. Since f is regular-closed, by Corollary 2.14 of [5], G(f) is closed in $X \times Y$. Let A be any closed set of X. Since X is compact, A is a compact set of X and hence f(A) is closed in Y by Lemma 3.1. This shows that f is closed.

COROLLARY 3.6. Let X be a compact space. Then, for a function $f : X \rightarrow Y$ the following properties are equivalent:

- (1) G(f) is closed.
- (2) f is closed.
- (3) The graph function $g: X \to X \times Y$ is regular-closed.
- (4) f is regular-closed.

Proof. It follows from the proof of Theorem 3.5 that (1) implies (2). By Theorem 2.13 of [5], (2) implies (3) and (3) implies (4) by Theorem 2.16 of [5]. It follows from Corollary 2.14 of [5] that (4) implies (1).

References

- CHUNG KI PAHK and HONG OH KIM (1974) On weak continuous functions into Hausdorff spaces, «Kyungpook Math. J. », 14, 239-242.
- R. V. FULLER (1968) Relations among continuous and various non-continuous functions, « Pacific J. Math. », 25, 495-509.
- [3] HONG OH KIM (1970) Notes on C-compact spaces and functionally compact spaces, «Kyungpook Math. J.», 10, 75–80.
- [4] N. LEVINE (1963) Semi-open sets and semi-continuity in topological spaces, «Amer. Math. Monthly », 70, 36-41.
- [5] P. E. LONG and L. L. HERRINGTON (1978) Basic properties of regular-closed functions, « Rend. Circ. Mat. Palermo », (2) 27, 20-28.
- [6] T. NOIRI (1973) On semi-continuous mappings, «Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. », (8) 54. 210-214.
- [7] T. NOIRI (1975) Properties of θ-continuous functions, «Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. », (8) 58, 887–891.
- [8] M. K. SINGAL and ASHA RANI SINGAL (1968) Almost-continuous mappings, «Yokohama Math. J. », 16, 63-73.