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SEZIONE I
(Matematica, meccanica, astronomia, geodesia e geofisica)

Fisica matematica. —  A  model collision operator for the drift 
Fokker-Planck equation for applications to transport problems in ma
gnetoplasmas. Nota W di M assim o T e s s a r o tto  <**), presentata dal 
Socio D . G r a ff i.

R i a s s u n t o . — Nella Nota viene presentato un modello di operatore di collisione 
per l’equazione cinetica di (deriva) di Fokker-Planck, valido per magnetoplasmi quie
scenti immersi in configurazioni idromagnetiche di equilibrio simmetriche.

Principale caratteristica del presente modello è di consentire -  contrariamente ad 
operatori di collisione approssimati in precedenza proposti da altri autori -  la determi
nazione di varijabili macroscopiche rilevanti includendo correzioni del primo ordine in 
termini di uno sviluppo perturbativo in funzione di un opportuno parametro adimen
sionale (A) che caratterizza le inomogeneità della configurazione magnetica.

1. I n t r o d u c t io n

In kinetic theory, the adoption of approximate models for the (Boltzmann) 
collision operator results, in many cases, convenient due to the relevant sim
plification which they afford. However, it is obvious that their practical use
fulness for the computation of relevant macroscopic dynamical variables for a 
given mechanical system, depends from their accuracy and range of validity, 
which—unfortunately—results often hard to assess ‘ a priori ’.

(*) Pervenuta all’Accademia il 7 ottobre 1981.
(#*) FOM-Instituut voor Plasmafysica, Rijnhuizen, Nieuwegein, The Netherlands; 

permanent address: Istituto di Meccanica, Università degli Studi, Trieste, Italy.

3. — RENDICONTI 1981, vol. LXXI, fase. 3-4.
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In the past various models have been proposed on the basis of simple phy
sical requests (in particular conservation laws to be fulfilled by the operator) 
as well as mathematical simplicity. A well known example is the model pointed 
out by Bhatnagar, Gross and Krook in a celebrated paper [1], which for its 
inherent simplicity (it is a linear operator, which in its most elaborate forms 
may contain momentum and energy restoring coefficients, and conserves the 
total mass as well) is frequently adopted in the most disparate problems, ranging 
from rarified gas dynamics (see, e.g., Ref. [2]) to plasma dynamics. A further 
example to be recalled is the so-called Lorentz model (see for example Ref. [3]), 
which results formally from a mutilation of the Fokker-Planck collision operator 
(to which the Boltzmann operator can be reduced under the assumption of 
‘ soft ’ collision, as appropriate to plasmas) and the addition of a momentum 
restoring term. More recent models adopted to describe transport processes 
in magnetoplasmas are more elaborate versions of the Lorentz approximation, 
which include also an approximate description of self-collisions and contain 
momentum and energy restoring coefficients (in analogy with the BGK model) 
[4-7].

All such model collision operators contain limitations. For example, it is 
well known that the BGK operator is not appropriate to describe weakly col- 
lisional magnetoplasmas which, in the absence of turbulent perturbations and 
for weakly inhomogeneous magnetic configurations, are essentially dominated 
(e.g. for closed configurations) by the dynamics of trapped particles. Thus in 
this case particle and kinetic energy transport are essentially produced by effect 
‘ localized ’ in velocity space (in the domain of trapped articles [4]).

Analogously the adoption of this model seems questionable for the investi
gation of stability and/or transport problems for (weakly) collisional magneto
plasmas in the presence of weakly turbulent perturbations. Similar objections 
may be cited for the Lorentz model (it neglects self-collisions and its validity 
is further in question for multi-species systems) as well for the more advanced 
models of Ref.s [4-]: they yield predictions accurate at most to leading-order 
in terms of a perturbative expansion with respect to an adimensional parameter 
A which specifies the “ degree of localization ” . A possible definition for A is:

(1) A =  8 I 1 — $ |2 with 8 =  <(1~B /B mJ )

where A 1 by assumption, e.g. either 0 <  § <̂ 1 or |1  — 5 |< ^1  (Bmax is 
the absolute maximum of B on a given isobaric surface and the brackets denote 
an appropriate averaging operation on the same isobaric surface), thus since the 
‘ width ’ of the domain of trapped particles is proportional to & we see that if 
8 < 1 then A ^  S and the localization occurs in the domain of trapped particles, 
whereas if 8 -> 1, A ^  | 1 — § |2 the localization results in the complementary 
domain (of circulating particles). It should be remarked, however, that whereas 
the model operator of Ref. [7] yields the correct results in both limits (1), those

(1) At least for the computation of the partilec fluxes.
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of Ref.s [5] and [6] are satisfactory only for configurations with weakly inho- 
mogenous magnetic field (8 < 1). Similar is the situation of the model presented 
in Ref. [4] (which refers to the special case of a two-component plasma), e.g. 
it yields predictions accurate at most to leading order with respect to A and for 
§ 1 (not for 8 -* 1).

Apart from such essential drawbacks, which limit the accuracy of such 
models or their range of validity, it seems that in some instances their introduction 
lacks mathematical (as well as physical) justification. In particular a reliable 
model should be constructed on the basis of rigorous criteria and its predictions 
should be checked once for all.

The essential mathematical criterion which shall be adopted in the sequel, 
to construct an esplicit model collision operator, is simply that it should yield, 
with prescribed degree of accuracy, appropriate moments of the distribution 
function, to be chosen in accordance with the specific class of problems.

More precisely, for quiescent magnetoplasmas, possible relevant moments 
are the particle and kinetic energy fluxes, which appear in the continuity and 
energy balance equations. However other choices may be relevant as well. For 
example, in the case of turbulent magnetoplasmas, further quantities of interest 
are the growth rate and the wave number of the fastest growing perturbation.

A possible mathematically meaningful request would therefore be that 
a given model collision operator delivers the correct values of such moments 
up to order, say, 0(A P) with p =  1 ,2  , • • - , k, after expanding each relevant 
physical quantity in power series of A.

In the sequel we intend to illustrate a model collision operator of this class 
which shall be discussed elsewhere in greater detail [8]. More precisely it is 
constructed in such a way to yield, up to order O (A), the correct particle and 
kinetic energy fluxes for a quiescent (weakly) collisional magnetoplasma. Fur
thermore, for definitess, we shall limit ourselves to a class of hydromagnetic 
equilibria which are symmetric, e.g. exibit at least one ignorable spatial coordinate.

It is felt that, although obtained for a specific problem, the actual relevance 
of the model lies not only in its detailed applications but has mathematically 
interesting features and results susceptible of further developments and gene
ralizations. 2

2 . A  MODEL COLLISION OPERATOR FOR THE DRIFT F o KKER-Pl ANCK EQUATION

Let us write down, for definitess, the drift Fokker-Planck equation in the 
form [3]:

(2) ® I I  «  • V& == Cs (/„ I /0  with / 1>8 =  gs +  £<D)

and

(3) £ s  * — x s  V l l f o . s  (Als +  X S A2s) .
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Here the notations are standard (see, e.g., Ref.s [8, 9]) and, in particular, f l t . 
is the perturbation of the local maxwellian distribution f 0jS and Cs (/0 | f y  the 
linearized Fokker-Planck collision operator in the Landau form, recalled in 
the Appendix. We shall confine our investigation of Eq. (2) to the limit 
vs,eff/coft}S < 1 (so-called “ weakly collisional regime” where v6.,eff and o btS 
are respectively an appropriate effective collision frequency and the bounce 
frequency characterizing the particle unperturbed motion).

In order to construct a model collision operator for Cs (/0 | f ±) (denoted 
Cm.s (/o I /i)> in accordance with the program previously outlined, we shall require : 
a) that it yields, up to order O (A) at least, the correct particle and kinetic energy 
fluxes; b) that it is consistent with fundamental physical principles: hence it 
must conserve momentum and total kinetic energy, as well as the mass; in 
addition it must yield strictly ambipolar particles fluxes (as follows, for sym
metric hydromagnetic equilibria, from the request of momentum conservation), 
namely :

where es is the electric charge and Fls the particle flux across and isobaric surface.
We introduce, thus, a parameter-dependent family of linear operators, 

CM,s (/o I/i), denoting by CM,s(/o l/i) its contribution of order O (/S?) (p =  0,1). 
In particular, for circulating particles (0 ^  X <  1/Bmax, with X the usual 
pitch-angle variable) we define:

(4) X  es r i* =  0
8

(5) C$,s (/o I/O =  K„ (/i°i (C(0)))

(6) C$,s ( /0 I /0  =  K0 (fill (C(1))) +  Kj (C<0))) +

whereas, for trapped particles (1 /Bmax ^  X ^  l/B):

(7) ~ CM>I ( / 0 I/,)  =  Ks (/?>) +  K, tó D)) +

Here we have introduced the positions:
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to assure momentum and energy conservation. Furthermore the operators K0, 
Kx and the energy functions Z11cs and ZÊ  are defined in the Appendix. 
Finally the real constants Cw (i =  0 ,1 ), are introduced by defining:

(9) fÔ  (C(i)) = / / ; ]  +  ms vn C(i)/ 0,s

and are uniquely determined by Eq. (4).
We note, in particular, that since in the case of trapped particles f t  s == 

+  o  «V. ,eff/^6,s)2) and the ‘ width ’ of their domain is proportional to 
8, we expect that their contribution to particle and kinetic energy fluxes results of 
order O (83) for 8 0 and O (| 1 — 8 |°) for 8 1.

Let us examine briefly the main features of the present model collision 
operator. The term Cm,s ( /0 |/i) (Eq. (5)) contains in particular (for C(O) =  0) 
the usual pitch-angle-scattering part of the Fokker-Planck collision operator, 
analogously to the Lorentz model, with the addition of a momentum restoring 
term. Thus apart terms of order O (8) (if 8 —► 0) it is equivalent to the models 
proposed in Ref.s [4-7]. The remaining contributions (Eq.s (6) and (7)) have 
no previous counterpart. However, in Ref. [7] a model operator has been adopted 
to take into account the contribution of trapped particles in the limit 8 ->  1. 
Their operator yields for trapped particles—-in contrast to ours, see, e.g., Eq.
(7) —corrections of order 0 (8 2) (instead of 0 (8 3)) to the particle and kinetic 
energy fluxes and thus appears inconsistent with the previous conclusions. 
Thus their model seems inadeguate for the purpose of determining contributions 
of order higher than 0(8).

We point out that our model collision operator yields indeed the correct 
expressions for the particle and kinetic energy fluxes up to order O(A). The 
detailed proof of this statement shall be reported elsewhere [8].

As final comment, we stress that the present model is also consistent with 
the request of local thermodynamic equilibrium, invoked to derive Eq. (2), 
namely f 0tS is a solution of the homogeneous equation:

(8) CM,5(/o|/o) =  0

as should be expected.
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APPENDIX

Here we recall briefly the usual definition for the Fokker-Planck collision 
operator in the Landau form to express it in the v-space coordinate v,X and 
0 (X =  [a/E with [a — v2J 2B, E =  v2ß  and 0 is an azimuth in a plane J_ to B). 
From. Eq. (25) results:

(A.1) 2  Csk (/0>t IA,s) = K0 ( /1)S) +  Kx (7W)

/ a 0  f J  r v ̂  f J3 / w I t  3 r m s  ̂ 7 f  \(A.2) I/o,a) -  Qsk-  ̂ * J d v dvdv * (/l,* ^  fQ's~~n^ dv'

(A.3) K0 (/1;S) =  (1 -  XB)* —  ( A (1 ~  XB)i -— A,., j

(A.4) Kj (71>s) = { 2^2 X (1 — XB) Ì~  ) { w ~dv~ U»(*) exp {“s(t,)} '

• { V — -----X ( l - X B ) — } (A,s exp {— <x4(v)})

(A.5) Us (v) = -~r 2  qsk N0)ifc( x j1 exp {— x\) +  2^1 — ~ T) Jdi exP — *2)
xk n

(A.6) ol8 (v) =  — 2 J  d t/t/
2  9s/t vm,k (  [  d v "fo,k  —  Vfo,kj ™sl™k 

2[________ _o______________________
V'

2  <hi vm,k ( J à.v" f 0)k —  i>7o,*)

Finally in Eq.s (6) and (7) ZF** for Fs =  1 , Es (Es =  ms v2/2) are the 
integrals:

V

(A. 7) ^iks ~  x s f̂OyS ~ ~  f d^ foykI ^sk
0

v

(A .8) ZE, S =  - 4 7 c t o T 0>, ( - 3  (1 + m jm k) { /0,s( l  +  —  *7*) “  ^  *7* — J d ^ /o j  +
o

v

+ 3 x* 2 k°>s 7  J* dv f °’s}) '0
(A .9) ask =  v \ j .] v tKs

(A. 10) S sk =  4 n  (1 +  m jm k) qsk

with qsk =  2~e~s ek In A /ml.
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