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M eccanica razionale . — Material constraints in continuum, 
mechanics. Nota di S tu a rt S. Antman (*>, presentata (**> dal Socio 
straniero C. T ru esd ell.

R iassu n to . — Si dimostra che ci sono valide ragioni per considerare la teoria stan­
dard dei vincoli interni, nella meccanica dei continui, insufficientemente generale. In 
particolare, con l’unica eccezione dell’iperelasticità, l’extra-stress dovrebbe dipendere 
anche dai moltiplicatori di Lagrange, cioè, dallo stress che non effettua lavoro (virtuale).

In this note we show that there are physically sound reasons suggesting 
that the accepted doctrines for the treatment of material (or internal) constraints 
in continuum mechanics are insufficiently general. We then explain how the 
requisite level of generality can be attained and indicate some of the important 
consequences arising from this generality.

Let C (x , t) be the Cauchy-Green deformation tensor at material point 
x of a body at time t. We define C* (x , t )  =  C (x , t — t )  for t  >  0. 
Let S (x , t) be the second Piola-Kirchhoff stress tensor at (x , t). Then the 
frame indifferent mechanical constitutive equation for an unconstrained simple 
material point x is

(1) S ( * , f )  =  S(C*(*,  - ) , x )

where S is a prescribed symmetric tensor-valued functional (cf. [8, Sec. 26]).
We now study the corresponding constitutive relations when C (x , •) is 

no longer free to range over the space V  of positive-definite symmetric tensors 
but must satisfy a set of independent, frame-indifferent constraints of the form

(2) x*(C,*) =  0 , £ =  1 , • • K <  6.

Here the are prescribed function with xk ( - yx) continuously differentiable 
on V. For K =  6, the deformation at x is rigid, so the only interesting 
cases are those for which K <  6. Under these conditions (2) defines a 6 — K 
dimensional manifold M =  M (#) in V. In a sufficiently small neighborhood 
N in V of any point C0 of M we can introduce a system of curvilinear 
coordinates (u , v) =  it , • • -, t / ~K , v1 , • • -, î;k) with u serving as coordinates 
for M, with v orthogonal to u, and with v =  0 for points C on M f i N .  Thus 
any C in N is identified with its coordinate (u , v) by means of the func­
tion N 3 C (Ü (C) , v (C)) , whose inverse is denoted (u , v) C (u , v).

(*) Department of Mathematics and Institute for Physical Science and Technology 
University of Maryland, College Park, Maryland, 20742, USA.

(##) Nella seduta del 26 giugno 1981.
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A basis for N is (C„ , C„) =  (aC/du1 , • • dC/Su~K , dCjdv1 dC/dvK). We 
introduce a basis in span {dC/du1 , • ■ •, dC/s«6"K} dual to {d'Cjdu1 , • • •, dC/ue~K} 
and let the components of S with respect this dual basis be denoted 
m =  (m1, • • m6_K). We introduce a basis in span {dC/dv1 , • • -, dC/vK} dual 
to {dC/dv1 , • • -, dC/dvK} and let the components of S with respect to this 
dual basis be denoted n =  (%,••• ,  %)•

The Constraint Principle of Truesdell and Noll [9, Sec. 30], generalizing 
the work of Ericksen and Rivlin [6] (and subsequently generalized to thermo­
mechanical problems by Green, Naghdi and Trapp [7]), asserts that the mecha­
nical constitutive equations for a simple material point x satisfying (2) consist 
of (2) and

(3) S (x , t )  =  — ^  lk (x , t) (C ( x , t ) ,  x) fdet C ( x , t )

+  S(C‘ (*, •)»*)

where I =  (Zx, • • •, ZK) is a function not prescribed by constitutive equations 
and where S need only be defined for histories satisfying (2). In terms of the 
variables u , v , m , w, the constraints (2) reduce to

(4) . v  =  0

and (3) reduces to an equation of the form

(5) m (x , t) = m  (u1 {x , • ) , x) .

By choosing the coordinates v appropriately we could identify I with n of (3). 
n is not prescribed by a constitutive equation. These formulations are compatible 
with the principle that the stresses are only defined to within a stress that does 
no (virtual) work in any deformation satisfying the constraints. The particular 
form of (3) generalizes that coming from the variational characterization of the 
equilibrium configuration of a hyperelastic body under conservative loads as 
one that extremizes the potential energy function.

Our main thesis in this note is that (3) or (5) is unduly restrictive: (3) 
should be generalized by allowing S to depend upon P as well. In parti­
cular, (5) should be replaced by

(6) m (x , t) =  m (u1 (x , • ) , nl (x , • ) ,  x).

There is no way to prove this thesis. We can merely show that it is physically 
and mathematically natural and that it is consistent with accepted methods of 
describing material behavior.

To support this assertion we write the constitutive equation (1) for an 
unconstrained simple material point in the equivalent (local) form

(7) m(x , i ) = m  (ul (x , • ) , v l {x , • ) ,  x) ,

(8) n(x  , t ) = n  (u1 {x , •) , v l (x , • ) , x) .
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Let us suppose that n (ul , • , x) is invertible in the sense that (8) is equi­
valent to an equation of the form

(9) v (x , t) =  v* (uf (x , • ) , nl (x , • ) ,  x ) .

The substitution of (9) into (7) reduces it to an equation of the form

(10) m(x  , t) =  m* {uf (x , •) , n1 (x , • ) ,  x) .

Since a real material satisfies constraints (2) only approximately (e.g., water and 
rubber are only approximately incompressible) we may regard the constrained 
material as a limiting case of a family of unconstrained materials. In particular, 
the constitutive equations for a material satisfying the constraints (4) (which 
are equivalent to (2)) are obtained from (9) and (10) by letting v* -> 0. In this 
limit n is not prescribed by a constitutive function, while (10) remains unchanged. 
Moreover (10) is equivalent to (6). (Note that m+ of (10) is a composite function 
with m acting on v +. In any process by which *0, there is no reason 
to hold m fixed. Thus it is not generally true that the limiting form 
of m* is independent of n*).

Before discussing the supposition that n (u1, • , x) is invertible, let us
consider two examples. For an elastic material, (7) and (8) reduce to

(11) m (# , t) =  m (u (x , t ) , v (x , t) , x) ,

(12) n (x , t) =  n (u (x , t) , v {x , t) , x) .

The invertibility of n ( u , • , x) leads to the system

(13) v (x , t) =  v* (u (x , t) , n {x , t) , x) ,

(14) m(x yt ) =  m* (u(x >t) , n ( x , t) , x) =  m( u[ x , t) , v* (u ( x , t) , n ( x , t) , x) , x),

which is equivalent to (11) and (12) and which is the appropriate specia­
lization of (9) and (10). The constitutive equations for the constrained 
material, obtained by letting v* 0, consist of (4) and (14). For a viscoe­
lastic material of differential type with complexity 1, (7) and (8) reduce to

(15) m (x , t) =  m (u (x , t) , ut (x , t ) , v (# , t) , v t (x , t) , x ) ,

(16) n (x , t) =  n (u (x , i) , ut (x , t) , v (x , t) , v t (x , t ) , x ) .

If n (u , ut , v , • , x) is invertible, then we can replace (15) and (16) with
the equivalent system

(17) v t (x , t) =  v # (u (x , t) , ut (x , t) , v (x , t) , n (x , t) , x ) ,

(18) m(x , t )  =  m* (u(x , t ) , ut {x , /) , © (x , t) yn (x , t) , #) .
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Regarding (17) as an ordinary differential equation for v ( x , •) we could 
impose an initial condition and solve it (under favorable conditions) to get 
a representation of the form (9) for v. This procedure is unnecessary for 
our present goals. We can simply obtain the equations for the constrained 
material by letting v + approach 0 and by requiring that there be a real 
number t  for which v (x , t) =  0. In this way we recover (4) and we obtain

(19) m(x  , t) =  (u (x , t) , ut (x , t) , 0 , n (x , t) , #)

as the specialization of (10).
Our supposition that n (u1, • , x) is invertible can be motivated by three 

different arguments:
i) For certain classes of materials commonly used constitutive inequa­

lities may ensure such invertibility while prohibiting the invertibility of the 
function (m( • , • , # ) ,  n (• , • , #)). E.g., the Strong Ellipticity Condition of 
elasticity implies the monotonicity of an appropriate stress component along 
any given line in deformation space. This fact, together with a suitable growth 
condition, delivers the deformation on the given line as a function of the cor­
responding stress component and of the other strains and can justify the process 
leading from (12) to (13) when K =  1. The Strong Ellipticity Condition with 
growth conditions can be used to show that the constitutive equations of elasticity 
can be uniquely solved for det C in terms of the stresses and the other strains. 
Thus the constraint of incompressibility can be handled by our methods (cf. [3]). 
Similarly the invertibility of n (u yuf , v , • , x) appearing in (16) would follow 
from growth conditions and from an assumption that is weaker than the re­
quirement that the governing equations of motion be parabolic (but stronger 
than the consequences of the Clausius-Duhem inequality).

ii) Since we propose to obtain (4), which assigns the unique constant 
function 0 to v in its dependence on {uf , rf\  we have no reason to prevent
of (9) from al$o depending uniquely on these same arguments. Moreover, if 
our constrained constitutive equations are to be the limits of those for all possible 
unconstrained materials, then a fortiori they must be the limits of those for 
which v # is uniquely defined.

iii) We could just postulate constrained constitutive equation (4) and (10) 
as our starting point. That should depend on nl might be regarded as a 
consequence of the Principle of Equipresence (cf. [8, Sec. 96]). This principle 
has not been used in the manner advocated here apparently because (10) does 
not have the traditional form for a simple material.

It is illuminating to study the imposition of constraints on a hyperelastic 
material. In terms of the variable u , v , m , n with u , v e N, the constitutive 
functions m and n of (11) and (12) for an unconstrained hyperelastic material 
must satisfy

(20)
f dm/du dm/dzA

is symmetric ,
Kdn/du dn/dv)
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whence it follows that there exists a stored energy function W such that

(21) m — dW/du , n =  dW/dv.

If n (u , • , x) has inverse (u , • , x), then we can define a new stored energy 
function W+ by the Legendre transformation

(22) W+ (u , n , x ) =  — n • v* (u , n , x) +  W (u , (u , n , x) , # ).

Then (22) implies that v + and m# (introduced in (14)) satisfy

(23) M* =  dW*/du , v*~-= — dW */dn.

Thus for a hyperelastic material, the functions and must satisfy

/  dm^jdu cm#/an\
(24) is symmetric.

\ — dv* I du — dv^jdn J

If we now obtain the constitutive equations for the constrained material merely 
by letting —* 0, then we simultaneously destroy the symmetry of the matrix
(24) unless we also require that jdn -> 0. Thus, if the constitutive equations 
(4) and (14) are to be obtained by our limit process from those for an uncons­
trained hyperelastic material, then must be independent of n. The same 
conclusion also follows from the theory of constraints for the variational problem 
of extremizing the potential energy functional (which is the sum of the stored 
energy functional and the potential energy of the applied loads). In this case I 
or n appear as Lagrange multipliers. The point of these observations is that if

is to be independent, of then this independence must either be based on 
an ad hoc, explicit postulate, or else must be justified on the basis of other physical 
principles. (E.g., thermodynamical principles support the assumption of hyper­
elasticity, which, as we have just shown, prevents m# from depending on n). Our 
findings thus show that the work of Ericksen and Rivlin [6], restricted to 
hyperelastic materials, cannot be faulted for insufficient generality.

To reinforce these ideas and to show that the generality we advocate is not 
vacuous as it is for hyperelastic materials, we study the imposition of constraints 
of the form (4) on a thermoviscoelastic material governed by unconstrained 
constitutive equations of the form

(25) v t (x , t) =  v # (u (x , t) , ut (x , t) , v ( x , t) , n { x , t) , 0 (x , t) , g (x , t) , x),

(26) m(x , t )  =  (u (x , t ) , ut (x , t) , v ( x , t ) , n ( x , t ) , 0 (x , t) , g (x , t) , x),

(27) q (x , t) =  q* (u (x , t ) , ut (x , t ) , v ( x , t) , n ( x , t ) , 0 (* , t) , g (x , t) , *),

(28) i|; (x , t) =  t];+ (u (x , t ) , ut (x , t ) , v ( x , t ) , n ( x , t) , 6 (x , t ) , g (x , t ) , x),

(29) 7) (x , t) =  y)# (m (x , t) , ut (x , t ) , v ( x , t) , n ( x , t) , 0 (* , *) , g (x , t ) , x),
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where 0 is the temperature, g is the temperature gradient, q is the heat flux 
vector, is the Helmholtz free energy per unit reference volume, and y\ is the 
entropy density per unit volume. Note that (25) and (26) generalize (17) and (18). 
We suppose that the constitutive functions (25)-(29) satisfy the Clausius-Duhem 
inequality (cf. [4, 9])

(30) +  vj* 0, H- m*-ut +  n- v*  +  q*-g/Q >  0 Vm , ut , v , n , 6 , g

where the arguments of the functions v*  , ■ • •, y]+ are those indicated in (25)- 
(29). (We can regard (30) as a mere constitutive restriction if we choose not 
to take it as the correct form of the Second Law of Thermodynamics). We 
obtain the constitutive equations for a material satisfying (4) by setting v*  =  0 
and deleting the argument v from the remaining constitutive functions. In 
this case we drop the term n - v # from (30).

By the standard procedure for treating (30) (cf. [4], [9, Sec. 96]) we und 
for the constrained material that

(31) dty*/dut =  0 , d^j dn  =  0 , dty*/dg =  0 ,

(32) m* (u , 0 , n , 0 ,0  , x) =  3^# (u , 0 , x)/du ,

(33) [m* (u , ut , n , 0 , g , x) — (u , 0 , x)jdu]-ut -\-

+  q* ( u , u t , n , Q  , g  , x)-gj 6 >  0 .

Equations (31) and (32) reinforce our findings for hyperelastic materials. But 
(33) shows that the Clausius-Duhem inequality does not suffice to remove n 
as a constitutive variable.

Let us note that our results with but minor modifications apply to any 
mechanical theory, such as those of rods, shells, polar media, etc. Indeed, the 
work of [7] indicates that it can be extended to thermomechanical and even more 
complicated constraints. Our observations are of potentially great importance 
in rod and shell theories, which may be placed in hierarchies with the simpler 
theories representing constrained versions of the more complicated theories. 
The example treated below gives an inkling of the issues involved.

To illustrate the effect that generalized constitutive relations can have on 
a well-set problem we describe the buckling of a straight rod of unit reference 
lenght in a plane. Let { i , j , k) be a fixed, right-handed orthonormal basis. 
The configuration of the rod is specified by a position vector function r  
from [0 ,1]  to span {*, j } , which locates the deformed axis, and a scalar 
function 0 on [0,1] ,  which gives the orientation of each unit vector 
a (s) =  cos 0 {s) i +  sin 0 (s) j  normal to the deformed cross-section at s. We 
set r (s) =  [1 +  v (s)] a ($) +  7) (s) k X a (s). This rod can suffer flexure,
extension, and shear. Its strains are v , v) , 0'. (Cf. [2], for a full discussion 
of this rod theory). Let N (s) a (s) +  H (s) b ($) be the resultant contact 
force and let M (s) k be the resultant contact couple at section s. If the

18. — RENDICONTI 1980, voi. LXX, fase. 6.
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only loads applied to the rod are terminal, then the equilibrium equations are

(34) A [ N ( , ) « ( , )  +  H(j) * x «(#)]==0,

(35) M' (s) +  (1 +  v) H — t)N =  0 .

The constitutive equations for the unconstrained rod are

(36) N (s) =  N (v (s) ,vj (*), 6' (s) , s ) , H ( s )  =

=  H (v (ÿ), 7) ( s) , 0' (s) , s ) , M (s) == M (v (s) , 7) (s) , 0' ( s) , s ) .

We assume that the function (N (• , • , 0 ', s) H (• , • , 0 ', s)) has an inverse
(v* (• , • , O' , s ) , T, " ( • , • , 0' i')) so that (36) is equivalent to

(37 a, b, c) v (s) =  v+ (N (*), H (s) , 6' (s) , s ) , y (s) =  tj* (N (s) ,

H (*), 0' (s) =  M* (N (s) , H( s ) ,  0' (s) , s) .

Suppose that H (v , 0 , 0 ' ,  s) =  0 and M (v , yj , 0 , s) =  0. We study the
problem in which

(38 a, b, c, d) r  (0) =  0 , 0 (0) =  0 ,

N (1) a (1) H (1) k X a  (1) =  — Xf , 6(1) =  0 .

Then (34) and (38 c) yield explicit formulas for N and H, which we substitute 
into (35) and (37) to get the following nonlinear eigenvalue problem for 0 and X:

(39) T  M* (— X cos 0 , X sin 0 , 0 ' ,  s)

+  X [1 +  (— X cos 0 , X sin 0 , 0' , s)] sin 0

+  (—  X cos 0 , X sin 0 , 0',  s)] cos 0 =  0 ,

0 (0) =  0 =  0 (1) .

Next we study the equations for an inextensible, unshearable rod obtained 
by setting v+ =  0 , y)# = 0, while retaining (37 c) (in accord with our 
prescription). Then (30) reduces to

(40) —  (— X cos 0 , X sin 0 , 0', $) +  X sin 0 =  0 ,0  (0) =  0 =  0(1) .

Had we adhered to the traditional doctrine of replacing (37 c) with M (5) =  
=  M # (07 (s) , s), then in place of (40) we would obtain

(41) —  M # (6, , î )  +  Xsin0 =  O , 0(0) =  0 =  0(1) .
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Now the linearizations of (40) and (41) about the trivial solution 0 =  0 are

(42) A { [3M+ ( - X ) 0 ) 0,5)/a6'] f}  +  X<P =  0 , <|> (0) =  0 =  <p (1),

(43) A  (aM# (0 ,s)ld&] f } +  x<J> =  0 , +(0) =  0 =  ^(1).-

The difference between these problems is substantial. Suppose that 
dM* (0 , s)/dQr >  0. Then the Sturmian Theory implies that (43) has a count­
able infinity of simple positive eigenvalues 0 <  X0 <  Xx <  X2 <  • • • and corres­
ponding eigenfunctions <];0 , , • • • with X* —>• oo as k —* oo and with ^
having exactly k interior zeros on [0,1] ,  each of which is simple. No such 
comprehensive statement is possible for (42). Indeed, (42) may have just a finite 
of eigenvalues (cf. [2]). Thus (40) has much of the richness of response of the 
unconstrained problem (39) so that the qualitative behavior of its solutions, 
which can be completely determined (cf. [2]), may differ markedly from that 
of the solutions of (41).

This example illustrates that there can be significant differences between 
the behavior of constrained hyperelastic materials and that of constrained non­
hyperelastic materials. For the latter, many of the expected simplifications need 
not be present when our more general constitutive functions are used. We note 
that these differences are even more pronounced in various problems for visco­
elastic materials, where the artificial distinction between hyperelasticity and 
Cauchy elasticity does not intervene.

We finally observe that a small parameter s can be introduced into consti­
tutive equations (9) and (10) so that v* =  0 when £ =  0. In this case we could 
readily construct a perturbation scheme to yield representations of solutions 
of boundary value problems for nearly constrained materials. The construction 
of such scheip.es for constitutive equations in the form (7) and (8) is somewhat 
more difficult and by no means unique. Cf. [1], [3] and [8]. A rigorous treatment 
of such a perturbation scheme has been given by Ebin [4].
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