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Meccanica dei solidi e delle strutture. — Inverse problem in 
engineering plasticity: a quadratic programming approach <*). Nota di 
G iu lio  M aier (**>, presentata <***) dal Corrisp. L. F in z i .

Riassunto. — Si considera un modello discreto (per elementi finiti) di un solido o un 
sistema strutturale perfettamente elastoplastico, con condizioni di snervamento « linea- 
rizzate a tratti », nell’ipotesi di olonomia assunta per processi di caricamento propor
zionali. Supponendo noti su base sperimentale certi spostamenti sotto assegnate azioni 
esterne, si formula il problema di identificare i limiti di snervamento, ossia le resistenze 
locali. Si dimostra che questo problema inverso di meccanica strutturale non lineare è 
trasformabile in un equivalente programma quadratico non convesso, suscettibile di 
risoluzione relativamente agevole con varie tecniche numeriche.

1. Introduction

An inverse problem in engineering mechanics can be formulated as follows, 
in sufficiently general terms for the present purposes : in a mathematical model 
of a mechanical system some parameters which characterize physical and/or geo
metrical properties are regarded as unknowns, besides the usual variables (such 
as displacements and stresses) which define the system response to given external 
actions (loads); experimental data on the response of the system to the given 
loads compensate for the lacking information on the system parameters; these 
are sought by minimizing a suitable measure of the discrepancy between the 
experimental data and the corresponding quantities predicted by the model for 
the same loads.

The practical motivation arises from the fact that in some structural and 
geotechnical engineering situations certain properties are not susceptible to 
direct in situ or laboratory measurements, see e.g. [7].

From the engineering mechanics standpoint thé conceptual interest of this 
class of system identification problems rests on its distinct and relatively novel 
features with respect to the traditional classes of analysis problems (where all 
unknowns concern the response to external actions) and design problems (where
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unknowns include also system characteristics, but conditions are imposed on 
the system response and a merit or cost function has to be optimized).

The inverse problem studied in this paper concerns the local resistances 
(or yield limits) in a discrete (finite element) model of an elastic-perfectly plastic, 
holonomie system with piecewiselinear yield loci; it presumes experimental 
information on the displacement response to quasi-static loading. The expression 
engineering plasticity (as distinct from continuum plasticity) refers to the discrete, 
computer-oriented nature of the model. The hypothesis of holonomie, path- 
independent constitutive laws (in the spirit of the “ deformation theory ” of 
plasticity) is justified in practice by the possibility of choosing for the experi
ments proportional loadings (which make local unstressing and irreversibility 
manifestations unlikely or negligible); this assumptions leads to a computa
tionally convenient model in finite, instead of incremental, terms [2, 9]. The 
present approach is deterministic: errors (or “ noises ”) possibly affecting 
measurements and/or model might be considered separately by estimation and 
filtering techniques [3].

Related previous works have dealt with the identification of elastic moduli 
in linear structural models [6] and of plastic properties by a purely numerical, 
direct-search approach, implying a large number of solutions to corresponding 
analysis problems [5]. The present structural identification problem, associated 
to the above specified class of nonlinear models, making use of their analytical 
peculiarities, is shown here to be ameneable to a single quadratic programming 
problem and, hence, to require presumably a computational effort comparable 
to that of a single corresponding structural analysis problem. Computational 
aspects, alternative approaches, further developments and numerical tests are 
presented elsewhere [10].

2. Formulation of the model
I

The class of discrete structural models considered will be such that the 
compatibility and equilibrium equations for the element aggregate can be expressed 
in the form:

(1) q =  Cu

(2) C Q  =  F

respectively, where: u and F denote vectors of the free nodal displacements 
(degrees-of-freedom) and corresponding nodal loads; q and Q are vectors of 
element generalized strains and stresses defined in the “ natural ” sense (i.e. 
unaffected by rigid-body motions, and selfequilibrated, respectively) [1]; matrix 
C depends on the undeformed geometry only; the tilde means transpose. Eqs. 
(1) (2) entail the usual ‘‘ small deformations ” assumption. The individual
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behaviours of all constituents of the (disassembled) model are described as 
follows :

(3 a) Q =  S(£  — NX)

(3b)  ^ =  N Q - r < 0

(3 c) X >  0 , $ X =  0

where: S denotes the block-diagonal matrix of the (symmetric, positive 
definite) elastic stiffness matrices of all elements; ^ ,X  and r are n-vectors 
of yield functions, “ plastic multipliers ” and yield limits, respectively, for all 
yield planes in the generalized stress spaces of all constituents; N indicates 
a block-diagonal matrix whose diagonal blocks are formed by columns 
representing the outward normal unit vectors to the yield planes of the 
relevant finite element or structural constituents; 0 is a vector of zeros; 
vectors inequalities apply componentwise. The relation set (3) defines 
piecewise-linear, holonomie, elastic—perfectly plastic constitutive laws for 
all elements [2, 9].

By substituting vectors # , Q , u , the above set of governing relations can 
be given the form of the following linear complementarity problem [8] :

(4a) l  =  N Q , +  N Z N X - r

(4b) £ < 0  X > 0  , j>X =  0

where: Q e represents a known vector of the linear elastic stress response to the 
given loads F ; Z is a (symmetric, negative semidefinite) matrix of influence 
coefficients for stresses due to imposed strains in the elastic range.

3. The id en tifica tio n  problem

Let the yield limits depend linearly on p  unknown parameters collected 
in vector P, usually constrained by bounds to a domain of physical significance:

(5) r =  R P  , PL <  P <  Pu .

Some, say m > p , nodal displacements in the real system under the given 
loads modeled by F are assumed to be known through measurements and 
form vector The vector uc of the same quantities calculated by means 
of the mathematical model of Sec. 2 can be expressed as:

(6) =

where the known vector ue contains the corresponding displacements which 
would be provoked by F in a hypothetical linear elastic regime; matrix G 
transforms into “ plastic displacements ” vector X which corresponds to r 
through (4). G , Z ,  Q e , u e are obtained by easy manipulations of (l)-(3), as 
functions of S and C ( Q e and ue also of F).
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The discrepancy between measured and calculated displacements, i.e. the 
“ loss function ”, can be defined as:

(7) co =s (uG — um) D {uc — um)

where D is a diagonal matrix of (positive) weighting coefficients taking into 
account possible differences in confidence level among the measured quantities.

Substituting (6) in (7) provides a quadratic form in X associated to a sym
metric, positive semidefinite matrix M. The constrained minimization of such 
an expression of the loss function with respect to P , X, <j> provides a formula
tion of the inverse problem in point as a problem in nonconvex nonquadratic 
programming, namely:

(8 a) min {co (X) == X M X +  è X +  c}

(8 b) subject to: (4) and (5)

where M and b are a vector and a matrix, respectively, of data and c a given 
constant. The difficulty of solving numerically this problem arises primarily 
from the presence of the (nonconvex) complementarity constraint (4 b) and 
motivates the transformation established in the next Section.

4. Reduction to quadratic programming

It will be proved below that problem (8) is equivalent to the following 
nonconvex quadratic program:

(9 a) min (X , ^) — co (X) — p $ X}

subject to:

(9b)  Ì  =  N Q e +  N Z N X  — RP  < 0

(9 c) X >  0 , PL <  P <  Pu

where p is a positive real to be chosen not lesser than a suitable threshold 
valued p0.

Recourse is made to a theorem established in [4]. This is re-stated here 
for convenience, denoting by || • || the Euclidean norm, by /  and x real-valued 
functions, by Y a closed set, by X and Z compact sets of the Euclidean space 
such that Z c: X.

Theorem [4]. Let the following conditions be fulfilled:

(a) function /  is bounded on X and there exists an open set Q =>Z 
and real numbers a , ß >  0, such that for any x , e Q, the following Holder 
inequality holds:

I/ ( * ) - / 0 ) 1  < « I I ? - 2 M I 9( 10)
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(b) it is possible to find a function x such that: (i) x is continuous 
on X; (it) x 0*0 =  0 for # e Z , x (#) > 0  for # €  X — Z; (m) for any z e Z  
there exists a real s > 0  and a neighbourhood say S (#) of z ,  such that, 
for any x e S ( z )  n (X — Z):

(11) x ( * ) > * l l * - * l  f .

The a real p0 exists such that for any p >  p0 the problem

(12) min /  (#) ,  subject to : x e Z f i Y

is equivalent to the problem

(13) min { / ( # )  +  P X (#)} > subject to: x e X n Y .

In order to derive from the above theorem the equivalence between problems 
(8) and (9), let us first define the following sets of vectors (X , ^ , P):

(14) U =  { ( X, £ , P )  : 0 < X <  A ; — O < ^ < 0  ; PL <  P <  Pu}

(15) V s { ( x , i , P )  : i  =  NQ^ +  N Z N X  — RP}

(16) W ^ { ( X , Ì , P ) c  X : j>X =  0}

where A and O are vectors of upper bounds such that they are not reached by 
the corresponding variables in the solution, a condition easily complied with 
by engineering judgement in all practical situations, as it is implicitly assumed 
that the loads F do not exceed the carrying capacity, i.e. that a (bounded) solu
tion to (4) exists for the actual values of the parameters. Thus problems (8) 
and (9) can be reformulated in the following forms, respectively:

(17) j min a) (x) , subject to : (X, § , P) e V fi W

(18) min {co (X) — p <j> X} , subject to: (X , § , P) e U D V .

Clearly, the sets U and W are compact, W c U  and V is closed. The compac- 
teness of U and the continuity of co (X) ensures the boundedness of this 
function on U. Let Q be an open sphere containing W, and let fix be the 
intersection of Q with the subspace of vectors X. Taking into account (8 a) and 
the Cauchy inequality, one realizes that, for any pair of vectors X', X" e fix *•

(19) co (X') — co (X") =  (X' — X") [M (X' — X") +  b) <

< | |X '  — X"|l • IIM(X' — h " ) + b \ \  < | |X '  — X"|| y

y =  sup | | MX +  £ | | <  +  oo.
XeOx

having set: 

(20)
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Therefore, the Hôlder inequality (10) is fulfilled by function co (X) for oc =  y  
and ß — 1, and, hence, condition (a) turns out to be satisfied when sets X 
and W are identified with the above defined U and W, respectively.

As for condition (b), its parts (/) and (it) are immediately seen to hold for 
the function  ̂=  — 4> X if X =  U and Z =  W. We prove below that also part 
(Hi) holds for ß =  1, when X =  U and Z =  W. Note that the interior of set 
W is empty. Setting x =  (X , — ^ )e U  and z  =  (X', — <k)e W, let us define:

(21) S(*) ^ { x  : 8 ^  H« — *|| <  8}

(22) (^, 7)) =  1/S(X — X' , — f )  =  l/S (* — *)

where S is a positive real.
Since cj/ X' =  0 , one can write :

(23) — î  X =  52 I I  +  S ( - £ '  I  +  V 21) =  8 [8 1 1  ( - 4 0  +  Si), Xi)

where the former summation concerns only those components i’s such that 
X̂ =  0 , < 0 ,  the latter is restricted to those i’s such that X̂ >  0. Let =>
mean implication; we notice that:

(24 a) <  0 => X̂ >  0 => (j4 =  0 => tj$ >  0

(24b) 7]. < 0  < 0  ^X- =  0 = ^ ^ > 0 .

Therefore, the summation in (23) contain nonnegative , y)$ and, hence, if 
z  ^ 0 ,  their sum is positive (as cannot occur) and has a positive
minimum, say k, over the intersection of the sphere 11 (A > ZD 11 =  1 with the 
nonnegative orthant >  0 , v) >  0.  In fact, this sum is a (homogeneous) linear 
iorm whose gradient has positive components. The minimum of % ^ over 
Il ( Ì  ,'21)11 =  1 is — 1. As a consequence, it follows from (23) that:

(25) — i  X >  a (— * +  * ) > ' * ( — S +  *) =  E II (X , — 40 — (X', -  cj/) II.

Since k does not depend on 8 , 8 can be chosen sufficiently small to make 
i  == &— 8 positive; then (25) becomes (11) with ß =  1. This completes the 
proof that also condition (b) is fulfilled. Thereafter, since the vector 
set V (15) is closed and can be identified with Y referred to in the above 
theorem, this theorem ensures the equivalence between problems (17) and 
(18), i.e. between problems (8) and (9). An expression for p0 established 
in [4] can be easily applied to the present context [10].
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5. Conclusions

The transformation of the inverse problem formulated in Sect. 3 to a qua
dratic program, by virtue of the equivalence demonstrated in Sect. 4, appears 
to imply significant computational gains, although the quadratic program is not 
convex. As it will be shown in [10], these advantages rest primarily on the circum
stances that at least a Karush-Kuhn-Tucker point can be efficiently obtained 
by a familiar algorithm for convex quadratic programming. This point can be 
checked for optimality by means of various criteria; it turns out to correspond 
to the global minimum in most practical cases, according to the numerical expe
rience achieved so far ; otherwise it can be used to initialize a second phase lead
ing to the global minimum.
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