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Calcolo delle probabilità. —  Optimal stopping for Markov 
Processes. Nota di M a ssim o  L o r e n z a n i , presentata 00 dal Socio 
E. M a r t in e l l i .

R iassunto. — In questa nota presentiamo dei nuovi risultati sul problema di 
tempo d’arresto ottimale per processi di Markov con tempo discreto.

1. In this note we present some new results concerning the existence of 
an optimal stopping time for Markov processes with discrete time.

We shall follow the notations of [10] a) or b). Let X  =  (X n , , Px),
n e N, be a Markov process with state space (E , « )̂, where ^  is a o-algebra, 
and transition probability p (x , T). We denote by L  the space of measurable
functions /  : E ---- * [— oo, -f- oo) such that M x { | /  (Xn) |} <  +  oo, for every
n e  N, and by B the Banach space of bounded measurable functions on E (of

course, B g i ) .  Since Ma.{ /(X 1)} =  I f ( y ) P ( x >dy), the right hand side

defines a linear operator on L  or B which will be denoted by T. If 
f  (x) , g ( x ) e L , we introduce the value function v (x) as

with SOt(/,0) =  ( t e SOÎ(/,0)/t is bounded}, which is, moreover, the limit of the func­
tions gn (x) =  max {gn_ 1 (x) , f (x)  +  Tg*_i (*)} =  max {g (x) , f ( x )  +  Tgn- i  (*)}, 
g0 (x) =  g (x) (see [10] b), pag. 28). Furthermore, v (x) satisfies the equation

E

where is the class of stopping times such that

We also introduce the function

v (x) =  max {g (x) , f ( x ) +  Tv (x)},

(#) Nella seduta del 14 febbraio 1981.
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since it is the minimal solution of the system of inequalities

^  I u ( x ) > g { x )

( u(x)  — Tu  (x) >  /  (x)

(we observe that also v (x) is a solution of (*S)).

2. G eneral results

The main problem (or SnelPs problem, see [9]) related to the function 
v (x) is the following: find a stopping time t  e such that

£(*) =  m J s V ( X * ) + £ ( X ?)} ;
U=o }

i.e.y an optimal stopping time.
All the results we shall obtain on the existence of an optimal stopping 

time are based on the following.

T heorem 1. Let f ( x ) Jg ( x ) e l J be two functions such that :
i) f  (x) =  (T — I) # (x) — w (x), with z  (x) , w (x) € L , w (x) >  0 

(I =  identity operator)
a) {sup I (g +  z) (x„) 1} < + oo.

n
Then,

1) v (x) =  v (x).
2) Tg =  min {k >  0/v (X*.) <  g (X*.) +  s} is an z-optimal stopping time\

that is y

v (x) >  M , j S / ( X , )  +  g (XTs) ] >  t, (*) _  £ .
I k = 0 )

3) I f  Fx {t0 <  +  oo} =  1 , t0 is optimal in S Ö .

Proof (sketch). The sequence of random variables
n—1

'F„ =  * (X „ )+  £ ( I - T ) * ( X < )
i=0

is an ^-m artingale. Since we have the relation M x {T0} =  M x {T^} for 
every bounded stopping time t (see [9], prop. IV-3-13), from i) it follows that

M x { S  /(X ,)  j =  M x {*(XT) -  | >  (X,)) - * ( * ) .

The above relation shows that v (x) can be also obtained starting from the 
functions (g +  z) (x) and — w (x). Thus, theor. 1 follows from [10] a), 
teor. 16 or b), theor. 23.
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Remark 1. If g (#) , z  (x) e B, the condition it) is, of course, satisfied; and, 
if also w (x) e B , v (x) e B.

From now on we shall deal with bounded functions.

A probability measure [x on (E , £$) is said an invariant measure for the 
Markov process i f

[x (T) =  j p  (x , T) [x (dx), v r  e
E

Let us consider a Markov process with an invariant measure jx. If f ( x )  
is as in theor. 1, since v (a?) e B, we observe that f ( x )  satisfies necessarily 
the following relation

j /  (#) |x (da:) <  0 .

Indeed, since jx is an invariant measure, we have J z  (#) (x (dx) = J Tz (x) (x (d#)
E E

for every ^ (x ) e B ;  and then it is enough to make use of the second ine­
quality of (S). Of course, the above relation does not imply, in general, 
that the function f  (x) verifies the condition i) of theor. 1. However, the 
following proposition shows when this is possible.

P ro p o s itio n  1. Let X =  (Xw , !Fn , P^) , n e N , be a Markov process with 
an invariant measure (x. I f  the linear operator T  : B -> B is such that codimR 
R (T — I) =  1 (R (T — I) is then a closed subspace of B), the following conditions 
are equivalent:

i) f ( x )  =  (T — I) z  (x) — w (#), w (x) >  0

ii) j f ( x )  [x (d^) <  0, for an (and then all) invariant measure (x.

In [4] can be found examples of Markov processes for which codimR 
R ( T  — I) =  1.

3. M arkov Chains

If we consider the class of Markov chains, we can get more precise results 
on Snell’s problem. To this purpose, we consider two cases: 1) E finite, 
2) E infinite.

1) Since every finite Markov chain has an invariant measure, we have 
the following

T heorem 2. I f  E is finite, the conditions
i) f  (x) =  (T — I) z  (x) — w (x) , w (x) >  0,

ii) ( / ,  (x) <  0 ( ( / ,  x̂) =  2 / ( x) ^  0*0) f or every invariant measure (x,
xeE
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are equivalent. Moreover, t0 is an optimal stopping time i f  and only i f  one of the 
above conditions is satisfied.

2) If E is infinite, a Markov chain has not in general an invariant 
measure. Indeed, if Ep denotes the set of positive recurrent states, there 
exists an invariant measure p if and only if Ep ^  0 . Furthermore, such 
a measure is unique if and only if Ep is an irreducible class of states. 
Making use of the above properties, we obtain the following

T heorem 3. Let X =  (Xn , , P^) , n e  N, be an irreducible Markov chain
(i.e. Ep =  unique irreducible class). I f  E =  Ep and /(# )  =  (T  — I) z  (a) +  
— w (x) , w (x) >  0 and not identically zero, t 0 is an optimal stopping time.

4. E rgodic transformations

A very interesting class of Markov processes is given by the dynamical 
systems. We recall some definitions and properties from [2] and [11].

A dynamical system is a collection (E , p , <j>n) , n e Z ,  where £  is a mea­
surable space, p a finite measure (we may assume that p (E) =  1) and (j  ̂
a (discrete) one-parameter group of automorphisms of ( E , p,) for which p is 
invariant; i.e.,

p (cj)n (A)) =  p (A) Vne  Z , VA  measurable.

-  A dynamical system (E,  p , cj>n) is said ergodic if, for each /  (x) e L1 (E, p), 
we have

lim v  S  /(<!>« (x)) =  ( f ( x) ft (d^) . a.e. in E.n jc=o J
E

Let {E , p , (J)n) be a dynamical system, we may define a group of linear 
operators {Tn} , n e Z ,  on L1 ( E , p) by means the relation:

(we put T° =  T). Then, according to [5], theor. 2.1, a dynamical system 
can be viewed as a Markov process; therefore, we have the following.

T heorem  4. Let (E , p , (|)n) be an ergodic dynamical system and 
f ( x ) , g  (#) e B. I f  f {x)  =  (T — I) z  (#) — w (#), with w (x) >  0 and w (x)> 0 
an a set positive measure, t0 is an optimal stopping time.

The results obtained show that only in the case of finite Markov chains 
we can give a necessary and sufficient condition for the solution of the Snell’s 
problem. In the other cases, that condition (on the function /  (x)) is only suf­
ficient. Therefore, we can ask what happens if f ( x )  is a little more general. 
To this purpose, we will study the optimal stopping problem on a classical 
example of ergodic dynamical system: the rotation of the circle.
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Let E =  S 1 =  {e2mx, x e R} be a circle, a e ( 0 , l )  an irrational number 
and (j)a the automorphism of S1 defined by the relation

^2nix  ̂  g2ni(x+a)

(e2mx) === e2m(x+na\  n e  Z). Then, (S1, p , <ĵ ) is an ergodic dynamical system 
(see [11]), where p is the Lebesgue measure. Since the system (S1, p , 
is a deterministic Markov process we have

V (x) =  v {x) =  sup M x j 2  /(X j)}  =  sup ( 2  T kf ( x )  ] =
n \h=0 ) n Ik=0 J

=  sup f 2 /(<j>*a (* ))), / €  L 1 (S1, p)
n U=o ;

(we assume that f ( x )  = g  (x)).
We shall consider three cases:

1) | / ( x ) p ( d x )  >  0 ,  2) I f ( x)y . (dx)  =  0,  3) J / (* ) [* (dx) < 0 .
s 1 s 1 s 1

1) Since the dynamical system (S1, p , cj>a) is ergodic,

1 n
lim w I 1 2  /(<!>*(*)) >  °-n -f- i  &+o

Therefore, sup I ^  /(<!>& 0*0 \ =  # (#) =  +  °° (1)- Observe that a function
n \&=0 j

with positive mean cannot verify i) of the theor. 1.

2) In this case, f  (x) satisfies i) of the theor. 1 if and only 
if f  (x)e R  (T — I); in other words, if and only if the equation Tz  (x) -f- 
— z  (x) = f ( x )  has a solution in L1 (S1, p).

Let us assume that f ( x )  e Cr (aS'1) , r >  0. Then, theor. 14.13 of [6] (see 
also [8], prop. 5.7.3, p. 193) shows that

SUP (S/(<l>* (*))} = +  oon I£=o J

if and only if the equation Tz (x) — # (#) — f ( x)  has not a solution in C° (51); 
moreover, if the above equation has not continuous solutions, cannot be solved 
also in L°° (*S'1, p) (see [8], prop. 4.2, p. 45). Therefore, we may ask when 
the equation has continuous solutions. It can be shown that the regularity 
of the solution depends on the choice of the irrational number a. Indeed, in 
[2], p. 224 and [8], prop. 8.2.1., p. 230 are given conditions on a (in the sense

(1) This fact is true for every ergodic dynamical system.
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of the theory of diophantine approximation) which guarantee the existence 
of continuous solutions. But, there exists irrational numbers a (precisely, 
those well approximable) for which it is not hard to see that the equation 
has not solutions in C° (S1) (see [2], p. 225). The following two results give 
an idea on the various possibilities of solutions and are very useful for our 
purpose.

In [1], Anosov has constructed an analytic function /  (x) and an irrational 
number a such that T  z (x) — z ( x ) — f ( x )  has a measurable solution which is 
not in L 1 (S 1, fx). In [7], Herman showed that, if /  (x) e L2 (S1, ^) has a lacunar y  
Fourier expansion, the equation has always a solution in L2 (S1, (x). Then, 
even if f ( x )  verifies the condition i) of the theor. 1, with z ( x ) $  C° (S1, [i) 
(and then z  (x) ^ L°° (S1, [x)), the value function v (x) =  +  oo. Therefore, i) 
of the theor. 1 is the best condition under which the optimal stopping 
problem makes sense.

3) If the function f ( x )  has negative mean, it is possible, as showed in 2), 
that it does not verify i) of the theor. 1. But the ergodicity property tell us that

lim J ; / ( < £ ( * ) ) < 0 .

n
Then, 2 /O W * ))  <  0 a.e. f°r n > If we choose /(x )  as in 2), the function

k=0
v (x) is finite a.e. But we are not able to prove if 3) is enough to guarantee that 
v (x) 6 L1 (E , (jl) or the existence of an optimal stopping time.

5. Optimal stopping w ith  control

In the following we shall make use of the notations of [4], Let us consider 
a Markov process with transition probability depending on a parameter; that 
is, ŵe have a function p (x , w , T) : E  X U X & -> R, where U is a set called 
controls space. A control is a sequence V  =  (v0 , , • • •, vn , • • •) of measura­
ble functions, where v0 : E U , v1 : E  X E -> U , v2 : E X E X E U , • • •. 
Moreover, a control is said Markovian if vn : E —>■ U for every n >  0. We 
denote by Y* the class of all the controls.

If h (x) is a bounded and measurable function on Ey for every u e U we 
may define a linear operator on B by the relation

T u h (x) =  j h (y) p  (x , u , dy) .
E

Let f ( x , u )  : E x  U -> R , g  (x) : E -> R be two bounded measurable 
functions. Then, we may define the function

v (x) =  sup M^ ; / ( x * , ^ ) + * ( x T)
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where $01̂  is the class of stopping times such that

m :  ( s  r  (x*, ©*)+g- (xT) ] < + oo
U=o )

for every V e i r . Let {gn (#)} , n e  N, be the sequence of functions defined 
in the following way:

gn (x) =  max {£ ( x ) , sup [ f ( x  , u) +  T “^ i  (*)]} ,

with g0 (x) - g (x). Then, the function v (x) =  lim g„ (x) satisfy the equantion

v (x) =  max {£ (a;) , sup [ /  (x ,u) +  T uv (*:)]} ;
U

and, moreover,

v { x ) =  sup Mff  ( s / ( x *> vh) + g Q Q
TeSmFbound., f'elT V*=°

A control V =  (v0, v 1 , • • -, v n , • • •) is said optimal if

gn  (*) =  gn (*) =  max {g (x) , f ( x , V n - i  (*)) +  T % gn_x (*)} 

for every n >  0.

T heorem 5. Let f ( x , u ) > g ( x )  be two bounded measurable functions 
and assume that there exists a Markovian optimal control V. I f  f ( x , u) —  
=  (Tw — I) z  (#) — w (x , u)y with w (# , u) >  0, then

1) V (#) =  V (tf).
2) Te =  min {k >  0/v (X*.) >  g (Kk) +  s} is an optimal stopping time in 

that is

V (X) >  m ! {’J j  f ( X k > v k) + g  (XTe) ) >  o (*) _  S .

3) If Pj {To <  +  oo} ==■ 1 , t0 is an optimal stopping time in <fS\r .

The existence of a Markovian optimal control is proved in [4] under the 
following hypothesis:

1) E metric space, 2) U compact metric space, 3) f ( x  , u) ,g  (x) upper 
semi-continuous functions, 4) T u h (#) continuous in x and u if h (x) is uni­
formly continuous.
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