ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

RAFFAELE TOSCANO, ALDO MACERI

The plate on unilateral elastic boundary support. Nota I

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **69** (1980), n.6, p. 351–362. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1980_8_69_6_351_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Meccanica dei solidi. — The plate on unilateral elastic boundary support (*). Nota I di Raffaele Toscano (**) e Aldo Maceri (***), presentata (****) dal Corrisp. E. Giangreco.

RIASSUNTO. — Si studia il problema della piastra elastica con appoggio elastico unilaterale al bordo. Si danno risultati di esistenza e unicità della soluzione.

We consider the problem of the linearly elastic plate, under transverse loads, resting on elastic, unilateral boundary support.

Given the bounded and connected domain Ω occupied by the plate in its middle plane $x_1 x_2$, let us assume external forces q and displacements v to be positive in x_3 direction (the orthogonal reference frame $Ox_1 x_2 x_3$ is anticlockwise).

The reaction r of the edge constraint has a "Winkler type" expression:

$$r = - Ev^+$$

where E is a non-negative function.

It is convenient to formulate the elastic equilibrium problem like an energetic one, considering a sufficiently general fourth order operator and taking into account distributed and/or concentrated forces.

Hence, we let:

 Ω a bounded and connected open of R^2 of class $\boldsymbol{R^{(0),1}}$ (in symbols $\Omega \in \boldsymbol{R^{(0),1}}$ [1]),

 Γ the boundary of Ω ,

s the curvilinear measure on Γ [1],

$$\mathrm{A} = \sum_{\substack{|r|=2 \ |s|=2}} \mathrm{D}^r \left(a_{rs} \; \mathrm{D}^s \right), \quad ext{with} \quad a_{rs} \in \mathrm{L}^\infty \left(\Omega \right) \quad ext{and} \quad a_{rs} = a_{sr} \,,$$

a fourth order differential operator such that:

$$\sum_{\substack{|r|=2\\|s|=2}} \int_{\Omega} a_{rs} \, \mathbf{D}^{s} \, v \, \mathbf{D}^{r} \, v \, \mathrm{d}x \ge a_{0} \sum_{|r|=2} \int_{\Omega} |\mathbf{D}^{r} \, v|^{2} \, \mathrm{d}x \, \forall v \in \mathbf{W}^{2}(\Omega)$$

$$(a_{0} = \text{const.} > 0),$$

$$\mathrm{E}\in \mathrm{L}^{\infty}\left(\Gamma\right)-\left\{ \mathrm{o}\right\} \text{, with }\mathrm{E}\geq\mathrm{o}\text{ s-a.e. on }\Gamma\text{, }q\in\left(\mathrm{W}^{2}\left(\Omega\right)\right)^{\prime}.$$

^(*) Financial support from the National Research Council of Italy (C.N.R.) for this work is gratefully acknowledged.

^(**) Istituto di Matematica della Facoltà di Ingegneria di Napoli.

^(***) Istituto di Scienza delle Costruzioni della Facoltà di Ingegneria di Napoli. (****) Nella seduta del 6 dicembre 1980.

^{25 -} RENDICONTI 1980, vol. LXIX, fasc. 6.

Furthermore, we let $\forall v \in W^2(\Omega)$:

$$\mathrm{J}\left(v
ight) = rac{1}{2} \sum_{\substack{|r|=2\|s|=2}} \int\limits_{\Omega} \, a_{rs} \, \mathrm{D}^{s} \, v \, \mathrm{D}^{r} \, v \, \mathrm{d}x + rac{1}{2} \int\limits_{\Gamma} \, \mathrm{E}\left[v^{+}\right]^{2} \, \mathrm{d}s - \left\langle q \,, v
ight
angle \, ,$$

and we are concerned with the following total potential energy minimum problem:

PROBLEM (P). Find $u \in W^2(\Omega)$ such that:

$$J(u) \leq J(v) \quad \forall v \in W^{2}(\Omega)$$
.

In N. 1 we will give some formulations equivalent to problem (P), in N. 2 we will study solution's existence and uniqueness questions, whose regularity will be finally analyzed in N. 3 of Note II.

I. – Lemma I. The functional J is convex, Gateaux-differentiable in $W^{\textbf{2}}\left(\Omega\right)$ and results:

$$J'(u,v) = \sum_{\substack{|r|=2\\|s|=2}} \int_{\Omega} a_{rs} D^{s} u D^{r} v dx + \int_{\Gamma} Eu^{+} v ds - \langle q, v \rangle$$

$$\forall (u,v) \in (W^{2}(\Omega))^{2}.$$

Consequently J is weakly lower semicontinuous on $W^2(\Omega)$.

Proof. Convexity is obvious. Let us prove that J is differentiable. It is sufficient to prove that the functional:

$$v \in W^2(\Omega) \to \frac{1}{2} \int_{\Gamma} E(v^+)^2 ds$$

is differentiable. The Lebesgue theorem on dominated convergence applies. $\hfill \square$

Lemma 2. For any $u \in W^2(\Omega)$, the functional $J'(u,\cdot)$ is linear and continuous on $W^2(\Omega)$. Moreover the operator:

$$B: u \in W^{2}(\Omega) \rightarrow J'(u, \cdot)$$

is monotone and hemicontinuous.

Proof. Linearity of $J'(u,\cdot)$ is obvious. As for continuity, it is obviously sufficient to prove it for the functional:

$$F: v \in W^2(\Omega) \to \int_{\Gamma} Eu^+ v ds$$
.

Because $\Omega \in \mathbf{R}^{(0),1}$, we have [1]:

(I)
$$\|v\|_{L^{2}(\Gamma)} \leq \text{const. } \|v\|_{W^{1}(\Omega)} \quad \forall v \in W^{2}(\Omega).$$

Continuity of F is then acquired by observing that:

(2) For any u and v elements of $W^2(\Omega)$ it results:

$$\int_{\Gamma} | E u^{+} v | ds \leq \text{const.} || E ||_{L^{\infty}(\Gamma)} \cdot || u^{+} ||_{L^{2}(\Gamma)} \cdot || v ||_{L^{2}(\Gamma)}.$$

Monotonicity and hemicontinuity of B are obvious.

By using Lemma 1, we easily prove that:

THEOREM 1. For any $u \in W^2(\Omega)$, the following statements are equivalent:

- a) u is a solution of problem (P),
- b) u is a solution of the variational (virtual work) equation:

(3)
$$u \in W^{2}(\Omega) : \sum_{\substack{|r|=2\\|s|=2}} \int_{\Omega} a_{rs} D^{s} u D^{r} v dx + \int_{\Gamma} Eu^{+} v ds = \langle q, v \rangle$$

$$\forall v \in W^{2}(\Omega).$$

c) u is a solution of the mixed type variational inequality:

$$\begin{split} u &\in \mathrm{W^2}\left(\Omega\right) : \sum_{\substack{|r|=2\\|s|=2}} \int\limits_{\Omega} \, a_{rs} \, \mathrm{D}^s \, u \, \mathrm{D}^r \left(v-u\right) \, \mathrm{d}x - \left\langle q \, , v-u \right\rangle \, + \\ &+ \frac{1}{2} \int\limits_{\Gamma} \, \mathrm{E} \, (v^+)^2 \, \mathrm{d}s - \frac{1}{2} \int\limits_{\Gamma} \, \mathrm{E} \, (u^+)^2 \, \mathrm{d}s \geq \mathrm{o} \qquad \forall v \in \mathrm{W^2}\left(\Omega\right). \end{split}$$

2. - Let us study now existence and uniqueness of the problem (P) solution.

Let us note as P_1 the subspace of $W^2(\Omega)$ of the not greater than 1st degree polynomials, and let us recall that, because $\Omega \in \mathbf{R}^{(0),1}$, it results [1]:

$$(4) c_{1}' \left(\sum_{|r|=2} \int_{\Omega} |D^{r} v|^{2} dx \right)^{\frac{1}{2}} \leq \|\bar{v}\|_{\underline{W}^{2}(\Omega)} \leq c_{1} \left(\sum_{|r|=2} \int_{\Omega} |D^{r} v|^{2} dx \right)^{\frac{1}{2}}$$

$$\forall \bar{v} = [v] \in \frac{W^{2}(\Omega)}{P_{1}},$$

where the positive constants c_1 and c_1' are independent of v.

We let $\Gamma_{\mathbf{E}} = \{x \in \Gamma \mid \mathbf{E}(x) > \mathbf{0}\}\$ and, $\forall x = (x_1, x_2) \in \mathbf{R}^2$:

$$\mathbf{1}(x) = \mathbf{1}$$
 , $p_1(x) = x_1$, $p_2(x) = x_2$.

Moreover, if $\langle q, \mathbf{1} \rangle > 0$, we let:

$$\xi = \left(\frac{\langle q, p_1 \rangle}{\langle q, 1 \rangle}, \frac{\langle q, p_2 \rangle}{\langle q, 1 \rangle}\right),\,$$

and we remark that $\langle q, \mathbf{1} \rangle$ is the component in the x_3 direction of the external forces resultant, applied, if nonzero, at ξ .

THEOREM 2. If problem (P) has solution, then $\langle q, \mathbf{1} \rangle \geq 0$. If $\langle q, \mathbf{1} \rangle = 0$ and problem (P) has solution, then $\langle q, p_1 \rangle = \langle q, p_2 \rangle = 0$. If $\langle q, \mathbf{1} \rangle > 0$ and problem (P) has solution, then:

(5)
$$\forall p \in P_1 - \{o\}, \quad \text{with} \quad p(\xi) = o,$$
$$s(\{x \in \Gamma_E \mid p(x) \ge o\}) > o.$$

If $\langle q, \mathbf{1} \rangle > 0$ and:

(6)
$$\exists p_0 \in P_1 - \{o\}$$
, with $p_0(\xi) = o$, $\exists s (\{x \in \Gamma_E \mid p_0(x) > o\}) = o$,

and if problem (P) has solution, then (5) is true and:

(7)
$$\forall p \in P_1, \quad \text{with} \quad p(\xi) = 0 \quad \text{and} \quad p \neq \lambda p_0 \quad \forall \lambda \in \mathbb{R},$$
$$s(\{x \in \Gamma_{\mathbb{E}} \mid p_0(x) = 0, p(x) > 0\}) > 0.$$

Proof. Let problem (P) admit a solution u. Because u satisfies (3). we must have:

(8)
$$\int_{\Gamma} Eu^{+} ds = \langle q, \mathbf{1} \rangle,$$

so that $\langle q, \mathbf{1} \rangle \geq 0$.

If $\langle q, 1 \rangle = 0$, from (8) and from the equality:

$$\int\limits_{\Gamma} E u^+ p_i \, \mathrm{d}s = \langle q, p_i \rangle$$

follows $\langle q, p_i \rangle = 0$.

If $\langle q, \mathbf{1} \rangle > 0$, because (8) is true, we have:

$$s\left(\left\{x\in\Gamma_{\mathrm{E}}\mid u\left(x\right)>\mathrm{o}\right\}\right)>\mathrm{o}$$
.

Hence, for any $p \in P_1 - \{0\}$ with $p(\xi) = 0$, because:

$$\int_{\Gamma} Eu^{+} p \, ds = \langle q, p \rangle = p(\xi) \langle q, \mathbf{1} \rangle = 0$$

it is obvious that:

$$s(\{x \in \Gamma_{\mathbf{E}} \mid p(x) \ge 0\}) > 0$$
.

Let us assume now $\langle q, \mathbf{1} \rangle > 0$ and let (6) be true.

At first, because:

$$\int\limits_{\Gamma} E u^{+} p_{0} ds = \langle q, p_{0} \rangle = 0$$

and, by (6):

$$Eu^+p_0 \le o$$
 s-a.e. on Γ ,

we have:

(9)
$$\operatorname{E} u^+ p_0 = 0 \quad \text{s-a.e. on } \Gamma.$$

After that let, by absurd, $\tilde{p} \in P_1$, with $\tilde{p}(\xi) = o$ and $\tilde{p} \neq \lambda p_0 \ \forall \lambda \in R$, exist such that:

(10)
$$s\{x \in \Gamma_E \mid p_0(x) = 0, \tilde{p}(x) > 0\} = 0.$$

From (9) and (10) we have:

(II)
$$Eu^+\tilde{p} \leq o$$
 s-a.e. on Γ .

Then, because u is solution of (3), we must have:

(12)
$$\int_{\Gamma} Eu^{+} \tilde{p} ds = \langle q, \tilde{p} \rangle = 0.$$

From (II) and (I2) it follows:

$$u^+ \tilde{p} = o$$
 s-a.e. on Γ_E .

Hence, taking account of (9) and observing that:

$$\{x \in \mathbb{R}^2 \mid \tilde{p}(x) = p_0(x) = 0\} = \{\xi\},\$$

results:

$$u^+ = o$$
 s-a.e. on Γ_E

and, consequently:

$$\int_{\Gamma} Eu^{+} ds = 0.$$

But that is absurd, because:

$$\int_{\Gamma} Eu^{+} ds = \langle q, \mathbf{1} \rangle > 0.$$

Hence (7) is true.

From Theorem 2 follows that problem (P) can allow a solution only in the following cases:

- $\langle q, \mathbf{1} \rangle = 0, \quad \langle q, p_1 \rangle = \langle q, p_2 \rangle = 0;$
- β) $\langle q, \mathbf{1} \rangle > 0$ and results:

(13)
$$\forall p \in P_1 - \{o\}$$
, with $p(\xi) = o$, $s(\{x \in \Gamma_E \mid p(x) > o\}) > o$;

$$\gamma$$
) $\langle q, \mathbf{1} \rangle > 0$ and (5), (6), (7) are true;

i.e., with different terminology, in following cases:

- a) the external forces system is self-equilibrated;
- β) the external forces resultant has the direction of the positive x_3 axis and is applied at a point ξ such that any through it straight line leaves on left and on right a set of constrained points whose measure is positive;
- γ) the external forces resultant has the direction of the positive x_3 axis and is applied at a point ξ such that any through it straight line leaves on the right or on the same straight line (and on left or on the same straight line) a set of constrained points whose measure is positive. Moreover a straight line r exists of equation $p_0(x) = 0$ such that on its right (or its left) the set of the constrained points has measure zero and such that all straight line through ξ different from it leaves on right and on left a set of points of r whose measure is positive.

Remark 1. Let us notice that from the Proof of (7) it follows that any possible solution u of problem (P) in the γ) case is such that:

(14)
$$\operatorname{E} u^{+} p_{0} = 0 \quad \text{s-a.e. on } \Gamma.$$

THEOREM 3. In the α) case, problem (P) allows infinite solutions, whose set coincides with the set of solutions of the variational equation:

(15)
$$u \in W^{2}(\Omega) : \sum_{\substack{|r|=2\\|s|=2}} \int_{\Omega} a_{rs} D^{s} u D^{r} v dx = \langle q, v \rangle \qquad \forall v \in W^{2}(\Omega)$$

(relative to a free plate problem) non-positive on $\Gamma_{\text{E}}\,.$

In the β) case problem (P) allows at least a solution.

Proof. About the α) case, by using (4), we verify immediately that (15) allows infinite solutions, whose set is an element of $\frac{W^2(\Omega)}{P_*}$.

Thus the thesis is easily proven. About the β) case, using again the problem (P) equivalence with (3), and taking account of Lemma 2, it is sufficient [2] to prove that:

(16)
$$\sum_{\substack{|r|=2\\|s|=2}} \int_{\Omega} a_{rs} D^{s} v D^{r} v dx - \langle q, v \rangle + \int_{\Gamma} E(v^{+})^{2} ds \rightarrow + \infty$$
as $||v||_{W^{2}(\Omega)} \rightarrow + \infty$.

By absurd, k > 0 and a sequence $\{v_n\}$ of elements of $W^2(\Omega)$ exist such that:

(17)
$$\|v_n\|_{W^2(\Omega)} > n \forall n \in \mathbb{N},$$

(18)
$$\sum_{\substack{|r|=2\\|s|=2}}\int\limits_{\Omega}a_{rs}\,\mathrm{D}^{s}\,v_{n}\,\mathrm{D}^{r}\,v_{n}\,\mathrm{d}x+\int\limits_{\Gamma}\mathrm{E}\left(v_{n}^{+}\right)^{2}\mathrm{d}s\leq\left\langle q,v_{n}\right\rangle +k\qquad\forall n\in\mathrm{N}.$$

By putting $w_n = \frac{v_n}{\|v_n\|_{W^2(\Omega)}}$, we have, from (18):

$$a_0 \sum_{|r|=2} \int_{\Omega} |D^r w_n|^2 dx \leq \frac{1}{\|v_n\|_{W^2(\Omega)}} \cdot \|q\|_{(W^2(\Omega))'} + \frac{k}{\|v_n\|_{W^2(\Omega)}^2} \quad \forall n \in \mathbb{N} ,$$

from which:

(19) for
$$|r|=2$$
 $\lim_{n\to+\infty} \|\operatorname{D}^r w_n\|_{\operatorname{L}^2(\Omega)}=0$.

Because $\|w_{n_i}\|_{W^2(\Omega)} = \mathbb{I}$ $\forall n \in \mathbb{N}$, there exists a subsequence of $\{w_n\}$, which we denote with the same symbol, weakly-convergent in $W^2(\Omega)$ (and hence strongly in $W^1(\Omega)$) towards an element w. From this, from (18) and because the functional:

$$v \in \mathrm{W}^2\left(\Omega\right) \to \sum_{\substack{|r|=2\\|s|=2}} \int\limits_{\Omega} \; a_{rs} \, \mathrm{D}^s \, v \, \mathrm{D}^r \, v \, \mathrm{d}x \, + \int\limits_{\Gamma} \; \mathrm{E} \, (v^+)^2 \, \mathrm{d}s$$

is weakly lower-semicontinuous we have:

$$a_0 \sum_{|r|=2}^{\infty} \int_{\Omega} |D^r w|^2 dx + \int_{\Gamma} E(w^+)^2 ds = 0$$

and hence:

for
$$|r| = 2$$
 $D^r w = 0$, $Ew^+ = 0$ s-a.e. on Γ .

Hence:

$$(20) w \in P_1$$

$$s\left(\left\{x\in\Gamma_{\mathbf{E}}\mid w\left(x\right)>0\right\}\right)=0.$$

From (19) and (20), and because

$$\lim_{n\to +\infty} \|w_n - w\|_{W^1(\Omega)} = 0,$$

we have:

$$\lim_{n\to+\infty}\|w_n-w\|_{\mathrm{W}^2(\Omega)}=\mathrm{o}\;,$$

and this, because $||w_n||_{W^2(\Omega)} = 1 \quad \forall n \in \mathbb{N}$, implies:

$$(22) w \neq 0.$$

Let us observe now that, from (18):

$$\langle q, w \rangle \geq 0$$
,

from which, because $\langle q, w \rangle = w(\xi) \langle q, \mathbf{1} \rangle$:

$$w(\xi) \geq 0$$
.

Moreover, if $w(\xi) = 0$, from (20), (22) and (13) we obtain:

$$s(\{x \in \Gamma_{\mathbf{E}} \mid w(x) > 0\}) > 0$$

and this contrasts with (21). Hence:

$$(23) w(\xi) > 0.$$

Let us prove that (23) is false. To see this, we let, $\forall x \in \mathbb{R}^2$, $Q(x) = w(x) - w(\xi)$.

If Q = 0, because $\forall x \in \mathbb{R}^2$ $w(x) = w(\xi) > 0$, we have:

$$s\left(\left\{x\in\Gamma_{\mathrm{E}}\mid w\left(x\right)>0\right\}\right)=s\left(\Gamma_{\mathrm{E}}\right)>0$$
,

which contrasts with (21).

If $Q \neq 0$, because $Q(\xi) = 0$, from (13) we have:

$$s(\{x \in \Gamma_{\mathbf{E}} \mid Q(x) > 0\}) > 0$$

which implies:

$$s(\{x \in \Gamma_{\mathbf{E}} \mid w(x) > 0\}) > 0$$

and this is impossible by (21). Hence (23) is false. This absurd proves (16).

About solution existence in the γ) case, it is convenient to study an auxiliar problem. We fix on Ω a point x_1 such that $p_0(x_1) \neq 0$, and we let:

$$V_1 = \{v \in W^2(\Omega) \mid v(x_1) = 0\}.$$

Because $W^2(\Omega) \subseteq C^0(\overline{\Omega})$ with continuous imbedding, V_1 , equipped by the norm of $W^2(\Omega)$, is a closed subspace of $W^2(\Omega)$. Now, we let s-a.e. on Γ :

$$\mathbf{E}_{1}(x) = \begin{cases} \mathbf{E}(x), & \text{if} \quad p_{0}(x) \geq \mathbf{0} \\ \mathbf{0}, & \text{if} \quad p_{0}(x) < \mathbf{0}, \end{cases}$$

and we consider the variational equation:

$$(24) u_1 \in \mathcal{V}_1: \sum_{\substack{|r|=2\\|s|=2}} \int_{\Omega} a_{rs} \mathcal{D}^s u_1 \mathcal{D}^r v \, \mathrm{d}x + \int_{\Gamma} \mathcal{E}_1 u_1^+ v \, \mathrm{d}s = \langle q, v \rangle \qquad \forall v \in \mathcal{V}_1$$

describing the elastic equilibrium of a plate supported only along r in the same way as the given plate, and moreover with imposed displacement equal to zero at x_1 .

THEOREM 4. In the hypotheses of the γ) case, (24) allows unique solution.

Proof. About the existence of a solution of (24) it is sufficient, as already done for Theorem 3, to prove that:

(25)
$$\sum_{\substack{|r|=2\\|s|=2}} \int_{\Omega} a_{rs} D^{s} v D^{r} v dx + \int_{\Gamma} E_{1} (v^{\dagger})^{2} ds - \langle q, v \rangle \to + \infty$$
as $||v||_{W^{2}(\Omega)} \to + \infty$ on V_{1} .

Denying (25), in a similar way as for Theorem 3 the existence of a $w \in V_1$ is proven such that:

$$(26) w \in P_1 - \{0\}$$

(27)
$$s(\{x \in \Gamma \mid E_1(x) > 0, w(x) > 0\}) = 0$$

$$\langle q, w \rangle \ge 0.$$

Let us prove that:

$$(29) w(\xi) = 0.$$

Because by (28):

$$w(\xi)\langle q, 1\rangle > 0$$

we must have $w(\xi) \ge 0$. By absurd, let us suppose $w(\xi) > 0$. We put, $\forall x \in \mathbb{R}^2$, $Q(x) = w(x) - w(\xi)$ and at first we remark that:

$$\mathrm{Q} \in P_1 - \{o\} \quad \text{ , } \quad \mathrm{Q}\left(\xi\right) = o \; .$$

Consequently, from (5), (6) and (7):

$$s(\{x \in \Gamma_{E} \mid p_{0}(x) = 0, Q(x) \ge 0\}) > 0$$

and consequently:

(30)
$$s\left(\left\{x\in\Gamma\mid \mathrm{E}_{\mathbf{1}}\left(x\right)>\mathrm{o}\;\;\mathrm{,}\;\;\mathrm{Q}\left(x\right)\geq\mathrm{o}\right\}\right)>\mathrm{o}\;\mathrm{.}$$

(30) implies:

$$s(\{x \in \Gamma \mid E_1(x) > 0, w(x) > 0\}) > 0$$

which contrasts with (27). Hence (29) is true. Now let us observe that, because $w \neq 0$, $w(x_1) = 0$ and $p_0(x_1) \neq 0$, it results:

$$w \neq \lambda p_0 \quad \forall \lambda \in \mathbb{R}$$

and hence, taking account of (26), (29) and (7):

$$s(\{x \in \Gamma_{\mathbf{E}} \mid p_{\mathbf{0}}(x) = 0, w(x) > 0\}) > 0$$

i.e.:

$$s\left(\left\{x\in\Gamma\mid\mathbf{E_{1}}\left(x\right)>\mathbf{o}\text{ , }p_{\mathbf{0}}\left(x\right)=\mathbf{o}\text{ , }w\left(x\right)>\mathbf{o}\right\}\right)>\mathbf{o}$$

which is absurd by (27). Thus (25) is proven; consequently at least one solution u_1 of (24) exists. Now let us prove that u_1 is the unique solution of (24). By absurd, let u_2 be a solution of (24) different from u_1 . Putting $\tilde{p} = u_2 - u_1$, by obvious relations:

$$\sum_{\substack{|r|=2\\|s|=2}}\int\limits_{\Omega} a_{rs} D^{s} (u_{2}-u_{1}) D^{r} (u_{2}-u_{1}) dx + \int\limits_{\Gamma} E_{1} (u_{2}-u_{1}) (u_{2}^{+}-u_{1}^{+}) ds = 0,$$

$$E_1(u_2-u_1)(u_2^+-u_1^+) \ge 0$$
,

and because $\tilde{p}(x_1) = 0$ and $p_0(x_1) \neq 0$, we have:

$$(31) \hspace{1cm} \tilde{p} \in P_1 \quad , \quad \tilde{p} \neq \lambda p_0 \quad \forall \lambda \in R$$

(32)
$$u_1^+ = u_2^+$$
 s-a.e. on $\{x \in \Gamma \mid E_1(x) > 0\}$.

Let us now notice that, from (5) and (6):

(33)
$$s(\{x \in \Gamma \mid E_1(x) > 0, p_0(x) > 0\}) = 0,$$
$$s(\{x \in \Gamma \mid E_1(x) > 0, p_0(x) = 0\}) > 0,$$

and, from (32):

$$u_1^+ = u_2^+$$
 s-a.e. on $\{x \in \Gamma \mid E_1(x) > 0, p_0(x) = 0\}$.

Hence, taking account of (31), we must have:

$$s(\{x \in \Gamma \mid E_1(x) > 0, p_0(x) = 0, u_1(x) > 0\}) = 0,$$

and this, together with (33), implies:

$$\sum_{\substack{|r|=2\\|s|=2}}\int\limits_{\Omega}a_{rs}\,\mathrm{D}^s\,u_1\,\mathrm{D}^r\,v\,\mathrm{d}x=\langle q\,,v\rangle\qquad\forall v\in\mathrm{V}_1\,.$$

Putting then $\bar{\lambda} = -\frac{1}{p_0(x_1)}$, because $1 + \bar{\lambda}p_0 \in V_1$ and $\langle q, p_0 \rangle = 0$, from the previous relation follows:

$$\langle q, \mathbf{1} \rangle = 0$$

against the hypothesis.

Theorem 5. In the γ) case, problem (P) allows solution iff, called u_1 the solution of (24), a real number λ_1 exists such that:

(34)
$$(u_1 - \lambda_1 p_0)^+ = 0$$
 s-a.e. on $\{x \in \Gamma_E \mid p_0(x) < 0\}$.

When this condition occurs, $u_1 - \lambda_1 p_0$ is solution of problem (P).

Proof. About the necessity, given a solution u of problem (P), we let:

$$\lambda_1 = -\frac{u(x_1)}{p_0(x_1)}$$
 , $u_1 = u + \lambda_1 p_0$,

so that $u_1 \in V_1$. Observing that:

$$E_1 = E$$
 and $u_1 = u$ on $\{x \in \Gamma \mid p_0(x) = 0\}$

and, from (14):

$$Eu^{+} = o = E_1 u_1$$
 on $\{x \in \Gamma \mid p_0(x) < o\}$,

we have, taking account of (6):

$$E_1 u_1^+ = E u^+$$
 s-a.e. on Γ

and consequently:

$$\int_{\Gamma} E_1 u_1^+ v ds = \int_{\Gamma} E u^+ v ds \qquad \forall v \in W^2(\Omega).$$

Hence, because u is solution of (3), u_1 is the solution of (24). Moreover, from (14) results:

$$(u_1 - \lambda_1 p_0)^+ = 0$$
 s-a.e. on $\{x \in \Gamma_E \mid p_0(x) < 0\}$.

Let us prove that the condition is sufficient. Let v be an element of $W^2(\Omega)$. Putting $\eta = -\frac{v(x_1)}{p_0(x_1)}$, because u_1 is solution of (24) and $v + \eta p_0 \in V_1$, results:

(35)
$$\sum_{\substack{|r|=2\\|s|=2}} \int_{\Omega} a_{rs} D^{s} (u_{1} - \lambda_{1} p_{0}) D^{r} v dx + \int_{\Gamma} E_{1} u_{1}^{+} (v + \eta p_{0}) ds = \langle q, v \rangle.$$

On the other hand, from (34) results:

$$E_1 u_1^+(v + \eta p_0) = E(u_1 - \lambda_1 p_0)^+ v$$
 s-a.e. on $\{x \in \Gamma \mid p_0(x) \le 0\}$,

and therefore, taking account of (6):

(36)
$$\int_{\Gamma} E_1 u_1^+ (v + \eta p_0) ds = \int_{\Gamma} E (u_1 - \lambda_1 p_0)^+ v ds.$$

From (35) and (36) follows that $u_1 - \lambda_1 p_0$ is solution of (3).

REFERENCES

- [1] J. NECAS (1967) Les méthodes directes en théorie des équations elliptiques, Masson.
- [2] F. E. Browder (1966) On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces, « Proc. N.A.S. », 56, 419-425.
- [3] R. TOSCANO and A. MACERI (1980) On the problem of the elastic plate on one-sided foundation, «Meccanica», 2.
- [4] S. AGMON (1955) Lectures on elliptic boundary value problems, Van Nostrand.
- [5] R. A. Adams (1975) Sobolev spaces, Academic Press.
- [6] G. STAMPACCHIA (1969) Variational inequalities, « Pubbl. IAC », s. III n. 25, Roma.
- [7] J. CEA (1971) Optimisation. Théorie et algorithmes, Dunod.
- [8] G. FICHERA (1972) Existence theorems in elasticity, Handbuch der Phisik, Band VI a/2, Springer-Verlag, 347-389.
- [9] J. L. LIONS and G. STAMPACCHIA (1967) Variational inequalities, «Comm. Pure Appl. Math. », 20, 493-519.