ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

RAFFAELE TOSCANO, ALDO MACERI

The plate on unilateral elastic boundary support.
Nota I

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti, Serie 8, Vol. 69 (1980), n.6, p. 351-362.

Accademia Nazionale dei Lincei

<http://wuw.bdim.eu/item?id=RLINA_1980_8_69_6_351_0>

L’utilizzo e la stampa di questo documento digitale & consentito liberamente per motivi di
ricerca e studio. Non é consentito 1'utilizzo dello stesso per motivi commerciali. Tutte le
copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/


http://www.bdim.eu/item?id=RLINA_1980_8_69_6_351_0
http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1980.



R. TOSCANO e A. MACERI, The plate on unilateral elastic, ecc. 351

Meccanica dei solidi. — 7%e plate on unilateral elastic boundary
support . Nota I di RarrarrLeE Toscano @ e ALpo MACERI ™™,
presentata ¢ dal Corrisp. E. GIanGRrECoO.

RIASSUNTO. — Si studia il problema della piastra elastica con appoggio elastico
unilaterale al bordo. Si danno risultati di esistenza e unicitd della soluzione.

We consider the problem of the linearly elastic plate, under transverse
loads, resting' on elastic, unilateral boundary support.

Given the bounded and connected domain € occupied by the plate
in its middle plane x,; x,, let us assume external forces ¢ and displacements v
to be positive in x; direction (the orthogonal reference frame Oux, x, x5 is
anticlockwise). :

The reaction » of the edge constraint has a ‘ Winkler type ’’ expression:

y = — Eout

where E is a non-negative function.

It is convenient to formulate the elastic equilibrium problem like an
energetic one, considering a sufficiently general fourth order operator and
taking into account distributed and/or concentrated forces.

Hence, we let:

Q a bounded and connected open of R? of class R®* (in symbols
Qe RO 1], ‘

I" the boundary of £,

s the curvilinear measure on I' [1],
A= 2 D" (a,, D), with ,€L*(Q) and g, =a,,

|r|=2
[s]=2

a fourth order differential operator such that:
>, , 2,D'0D vdx >a, 3, " |D" 2 |* dx Yo € W* (Q)
jri=2 o
(ap = const. > 0),

EeL®T)—{o}, with E>o0 sae onI', ge(W'(Q)).
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Furthermore, we let Vo€ W* (Q):

=2
ls]=2

J@ =1 2 fa,stvDrvdx+%f E [vt]2ds —{g,v),
Q i

and we are concerned with the following total potential energy minimum
problem:

ProBLEM (P). Find ue W*(Q) such that:
J@ <T@ WYweW'(Q).

In N. 1 we will give some formulations equivalent to problem (P), in N. 2
we will study solution’s existence and uniqueness questions, whose regu-
larity will be finally analyzed in N. 3 of Note II.

1. — LEMMA 1. The functional | is convex, Gateaux-differentiable in
W2 (Q) and results:

J(w,v)= 2 fa,,DsuD'vdx—}—fEu+yds_<g,v>
lr|=2
[sj=2 Q r

V (x, 7)€ (W(Q)".
Consequently ] is weakly lower semicontinuous on W* (Q).

Proof. Convexity is obvious. Let us prove that J is differentiable.
It is sufficient to prove that the functional:

yewz(g>_>§f E (v+)* ds

is differentiable. The Lebesgue theorem on dominated convergence applies. ]

LEMMA 2. For any we€ W*(Q), the functional J'(u,-) is linear and
continuous on W2 (Q). Moreover the operator: ’

B:ueW(Q)—]J (»,")
is monotone and hemicontinuous.

Proof. Linearity of J' (»,-) is obvious. As for continuity, it is obviously
sufficient to prove it for the functional:

F:vewz(Q)ﬁ{Eu"'vds.

r
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Because Q€ R we have [1]:

®

| 2 |lLeqy < const. || 7 [lwrq) Vv e W2(Q).

Continuity of I is then acquired by observing that:

()

For any # and v elements of W2 () it results:

J | E* v | ds < const. || E llueoy - || 22" Iz - | 2 e -
r

Monotonicity and hemicontinuity of B are obvious. []

By using Lemma 1, we easily prove that:

THEOREM 1. For any u€ W?(Q), the following statements are equivalent:

a) u is a solution of problem (P),

b) u is a solution of the variational (virtual work) equation:

(3) ne W2(Q): Y, JanDsuD'vdx%—fEu+7/ds=(g,v)
i
Yo e W2(Q).
C) u is a solution of the mixed type variational inequality:
ne W(Q): Y, J 4, D' uD" (v—u)dx — (g, v-—u) -+
ng Q
—[——%—fE(zﬁ')“‘ds——-%fE(u+)2ds20 Vv e W2 (Q).
r r
2. — Let us study now existence and uniqueness of the problem (P)
solution.

Let us note as P, the subspace of W2(Q) of the not greater than 1st
degree polynomials, and let us recall that, because Qe R, it results [1]:

@)

a (m 2f|D’v| dx) <Hi)|lw2(n)<€1(z fID’vl dx)%

we ( 9

1

= [v]€ —5—

where the positive constants ¢, and ¢; are independent of .
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We let I'y = {xe ' | E (x) > o} and, Vx = (x,, x,) € R2:
1(x) =1 o @) =2, pa(®) =2
Moreover, if (¢,1) > o0, we let:

= (A )

and we remark that (g, 1) is the component in the x; direction of the
external forces resultant, applied, if nonzero, at &.

THEOREM 2. If problem (P) has solution, then {q ,1)=>o0. If (¢,1)=0
and problem (P) has solution, then {(q,p)y =1{g,p)=0. If {(g,1)>0
and problem (P) has solution, then:

(s) vpeP,—{o}, with p (&) =o,
s(reTe|p(x) =oP)>o0.
If (g,1)>0 and:
6) 3o P—{o}, with py(§)=0 , Fs{{xele|p(x)>0})=o,
and if problem (P) has solution, then (5) is true and:
@) VpeP,, with p(E)y=0 and pF#xp, VAER,
srele|po(x) =0, p(x)>o0h>o0.

Proof. Let problem (P) admit a solution z. Because # satisfies (3).
we must have:

®) | Bt ds= (g, 1),

so that (¢,1) > o.
If {(¢,1) =0, from (8) and from the equality:

| B pids =<, 0

r

follows (¢, p;) = o.
If {(¢,1) > o, because (8) is true, we have:

s(frelg|lu(x)>0})>o0.
Hence, for any p€ P, — {o} with p (§) = o, because:

| Bt pds =g, 0y =@ (g, 1) =0

r
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it is obvious that:
szels|px) =0} >o0.

Let us assume now (g, 1) > 0 and let (6) be true.
At first, because:

{ Eu* pods = (g, po) =0

T
and, by (6):
Eu" p, <o s-a.e. on I,
we have:
(9) Eut py=0  s-ae on I'.

After that let, by absurd, # € P,, with $ (§) = 0 and § # Ap, VAER, exist
such that:

(10) c{weTe|po) =0, f (>0} =o.
From (9) and (10) we have:

(11) Ex"p <o  s-ae on I'.

Then, because # is solution of (3), we must have:

o [ pare @ r=
‘ r
From (11) and (12) it follows:
u"p=o0 s-a.e. on I'g.
Hence, taking account of (9) and observing that:
FeR 3 (x) = po(x) = 0} = {&},
results:

u =0 s-a.e. on I'g

and, consequently:

fEuJ"ds=o.

r
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But that is absurd, because:
J Eutds=(g,1)>o0.
r

Hence (7) is true. []

From Theorem 2 follows that problem (P) can allow a solution only
in the following cases:

) (g,1)y=0, (g,7)=1{(q,0:) =0;
B (¢,1)>0 and results:

(13)  VpeP,—{o}, with pE =0 , s{xele|p@)>0)>o0;.
Y) {g,1)>0 and (5), (6), (7) are true;
i.e., with different terminology, in following cases:

«) the external forces system is self-equilibrated;

B) the external forces resultant has the direction of the positive x4
axis and is applied at a point & such that any through it straight line leaves
on left and on right a set of constrained points whose measure is positive;

v) the external forces resultant has the direction of the positive xg
axis and is applied at a point £ such that any through it straight line
leaves on the right or on the same straight line (and on left or on the same
straight line) a set of constrained points whose measure is positive. Moreover
a straight line » exists of equation p,(x) = o such that on its right (or its
left) the set of the constrained points has measure zero and such that all
straight line through £ different from it leaves on right and on left a set of
points of » whose measure is positive.

Remark I. Let us notice that from the Proof of (7) it follows that
any possible solution # of problem (P) in the ¥) case is such that:

(14) Eu" p, =0 s-a.e. on I'.

THEOREM 3. [n the o) case, problem (P) allows infinite solutions, whose
set coincides with the set of solutions of the variational equation:

(1%) we W2(Q): 3 j a,, D' uD" vdx = {(g,v) v e W2 (Q)

=2
=2 Q

(velative to a free plate problem) non-positive on I'y.
In the B) case problem (P) allows at least a solution.

Proof. About the «) case, by using (4), we verify immediately that (15)
W2 Q)

allows infinite solutions, whose set is an element of D
: 1
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Thus the thesis is easily proven. About the B) case, using again the
problem (P) equivalence with (3), and taking account of Lemma 2, it is
sufficient [2] to prove that:

(16) famstDrvdx—@ v)—{—fE(zﬁ)zds——»qLoo
Mﬂg Q

as || v|lwxg — + 0.

By absurd, £#> o0 and a sequence {v,} of elements of W2(Q) exist such
that:

(17 oy llwe) > 7 VreN,
(18) ) janstnD'vndx—}—' E (o) ds < (g,v,) + & vneN .,
S P
By putting w, = —v"—, we have, from (18):
| 75 lween
JID’ dr < gl + — vrneN
Wiy + e )
o A @ T Mo ey
from which:
(19) for |r|=2 lim |D"w, g =o0.
n—> 400
Because [[w, |lwxoy =1 Vz€N, there exists a subsequence of {w,}, which

we denote with the same symbol, weakly-convergent in W?*(Q) (and hence
strongly in W!'(Q)) towards an element w. From this, from (18) and
because the functional:

r|=2
Is|=2 Q

2EW2(Q) > 3 J%anmu+fmwws
r

is weakly lower-semicontinuous we have:

%;.thﬁu+waWm=o
]r =2
Q T

and hence:

for |r|=2 D'w=0 , Ew'=o0 sae on I'.
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Hence:
(20) we P,
(21) s(weTe|w(x >0} =o.

From (Igj and (20), and because

lim ||w, — @|[wy = o0,
N—> 400

we have:

lim [|w, — wl|wxq =0,
n—4-00

and this, because | w, “w2(9) =1 VreN, implies:
(22) wF 0.
Let us observe now that, from (18):
(g,w) =0,
from which, because (¢ ,w) = w (§) (g, 1):
w(§) =>o.
Moreover, if w (§) = o, from (20), (22) and (13) we obtain:
s({xelg|w(x)>o0})>o0,
and this contrasts with (21). Hence:
(23) . w®>o.

Let us prove that (23) is false. To see this, we let, Vxe R®, Q(x) =
—w (@) —w (). |
If Q=o0, because Vx€R? w(x) =w () >0, we have:

s(reTe|w () > o)) = s(Te) >0,

which contrasts with (21). |
If Q s~ o0, because Q (&) = o, from (13) we have:

s{xeTe|Q @) >0} >0
which implies:
s{xel'g|w(x)>o0})>o0,

and this is impossible by (21). Hence (23) is false. This absurd proves (16). []
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About solution existence in the y) case, it is convenient to study an
auxiliar problem. We fix on Q a point #; such that p,(x;) # 0, and we let:

Vi={ve W2(Q)|v(x) = o}.

Because W? (Q) < (ox (Q) with continuous imbedding, V,;, equipped by the
norm of W?(Q), is a closed subspace of W2(Q). Now, we let s-a.e. on I':

El(x):’mx), if  po(x) =0

o , i po(x) <o,

and we consider the variational equation:

(24) #, €V, 2 fa,stulD'vdx—}—JElufvds=<q,v) Vv eV,

Q r

describing the elastic equilibrium of a plate supported only along #» in the
same way as the given plate, and moreover with imposed displacement
equal to zero at x.

THEOREM 4. [n the hypotheses of the ) case, (24) allows unique solution.

Proof. About the existence of a solution of (24) it is sufficient, as -
already done for Theorem 3, to prove that:

(25) 1;_3
|

2
s|=2

j a,, D'v D" vdx + [ E, (v’ ds — (¢ ,v) - + o0
Q r

as | vllweey - + o0 on V.

Denying (25), in a similar way as for Theorem 3 the existence of a w€ V,
is proven such that:

(26) we P, — {o}
(27) sfxeT |E,(x) >0, w(x)>o0}) =0
(28) | (¢, w)=0.

Let us prove that:
(29) w(@)=o.
Because by (28):

w(E){(¢,1) =0,
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we must have w (§) = 0. By absurd, let us suppose w () > 0. We put,
vreR}, Q) =w(x) —w () and at first we remark that:

QeP,—{o} , QE=o.
Consequently, from (3), (6) and (7):
s{reTelpo(x) =0, Q) =0} >o0
and consequently:
(30) sreT|Ey(®) >0, Q)=o) >o0.
(30) implies:
s{zxeT|E,(x) >0, w(x) >o})>o0,

which contrasts with (27). Hence (29) is true. Now let us observe that,
because w # 0 , w(x) =0 and p,(x;) 5~ 0, it results:

wF#Npy  VAER
and hence, taking account of (26), (29) and (7):
s(xeTe| po(x) =0 , w(@)>0}) > o
ie.:
S(EET|E @ >0, @ =0, w(x) >0} >o0

which is absurd by (27). Thus (25) is proven; consequently at least
one solution #, of (24) exists. Now let us prove that z is the unique
solution of (24). By absurd, let #, be a solution of (24) different from ;.
Putting p = u, —u,, by obvious relations:

f Ay D’ (tty — u3) D" (sty — 10,) dx +f E, (s — 1) (ud —ui)ds = o,
e P

E, (s — ) (ua —ui) =0,
and because p (x;) =o-and p,(#,) 720, we have:

(31) peP, , pFA, VAER

(32) wi = ud  s-ae on {xel'|E,(¥)>o0}.

Let us now notice that, from (5) and (6):

(33) sreT |E (x) >0, po(x)>0}) =0,
s{xreT|E (x) >0, po(x) =0})>o0,
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and, from (32):
ut = ug s-ae. on {x€T|E;(@)>0, po(x) =0}.
Hence, taking account of (31), we must have:
s{xeT |E,(x)>0, po(x) =0, u,(x)>0}) =0,
and this, together with (33), implies:

Y farstulDrvdxz(g,v) YveV,.

Irj=2
js|=2 @

Putting then A = — , because 1 4+ Ap, €V, and (g, p,) = o, from the

_r
Do (%1)

previous relation follows:

(¢,1) =0
against the hypothesis. []

THEOREM 5. [n the ) case, problem (P) allows solution iff, called u,
the solution of (24), a real number Ay exists such that:

(34) (4, — N po) =0 sae. on {xelg| po(x) < o}.

When this condition occurs, u, — N po is solution of problem (P).

Progf. About the necessity, given a solution # of problem (P), we let:

N = — 2 (27)

74 (x1) ) wy=1u-+ N po,

i

so that #,€V,. Observing that:
E,=E and wu=u on {xel'|p,(x)=o0}
and, from (14):
Ext =o0=FE,u, on {xel|p,(x) <o},
we have, taking account of (6):
E, uit = Eu* s-a.e. on I

and consequently:

r

fEluf'dex:fEuJ’vds Yo e W2(Q).
r
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Hence, because # is solution of (3), #, is the solution of (24). Moreover,
from (14) results:

(0, — M po)t =0 s-a.e. on {x€T'g| py(x) <o}.

Let us prove that the condition is sufficient. Let v be an element of W2(Q).

Putting = ———ZO—(Z%, because #u, is solution of (24) and v+ np,€V,,

results:

69 % | oD a—hpg D odrt | Byai b npds= (g, 0).
Q

ri=2
s|=2 r

[N

On the other hand, from (34) results:
“Eyus (04 npo) = E (s — N po)t v s-ae. on {x€l'|p,(x) <o},

and therefore, taking account of (6):

(36) f E, i (v + npo) ds = J E (uy — N po)’ v ds .

r r

From (35) and (36) follows that #; — X p, is solution of (3). []
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