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Analisi matematica. — Results on lincar and nonlinear hyperbolic
boundary value problems at resonance. Nota di MicHAEL W. SMILEY ),
presentata *» dal Socio D. GRAFFI

* RIASSUNTO. — Si considera 'equazione non lineare nell’incognita = (¢, x) ((1, 1) del
testo) soddisfatta in un cilindro G = (o, T)XQ (Q dominio limitato di R®) con condizioni
al contorno tipo Dirichlet 0 Neumann sulla superficie laterale di G e con relazioni omogenee
fra « e u, sulle basi.

Si stabiliscono per la (1) e nel caso di risonanza alcuni teoremi di perturbazione.

§ 1. INTRODUCTION

We consider nonlinear hyperbolic boundary value problems in which
the partial diiferential equation takes the form

(1.1)

A FA@u=clg +/].

This equation is to be satisfied weakly, in the cylinder G = (0, T)XQ where
Q is an open bounded subset of R%. In equation (1.1) we assume that A (¥)
is a strongly elliptic operator, uniformly in Q, having order 2 m for m > 1;
that g(.) is a nonlinear Nemytsky operator generated by the real-valued
function g: R —R; and that ¢ is a real parameter. In addition to satisfying
(1.1), a solution must also satisfy boundary conditions, possibly of mixed
type, on the lateral surface and ends of the cylinder G = (0, T)x Q. The
boundary conditions are also to be satisfied in a weak sense. On the lateral
surface (0, T)X2Q either Dirichlet or Neumann conditions will be in force.
On the ends of the cylinder, {0} X Q and {T} xQ, we will impose linear homo-
geneous two point boundary condition of the form

B1%=an%(0,x> —l_alzut(o.,x) —|-511%<T,x) —I_blgut(T,x):O
Bou=aynu(o,x) + apu,(0,x) +byu(T,x)+ bypu,(T,x)=0,

(1.2)

where (an, @, by, bys) and (ag, @sy, b, b3,) are linearly independent
constant vectors in R4, Observe that the Dirichlet, Neumann, and periodic
boundary condition are particular instances of (1.2).

The phenomena of mathematical resonance is exhibited by many of the
boundary value problems falling into the cldass of problems described above.

(*) Department of Mathematlcs, Towa State Umver51ty, Ames, Towa 50011
(**) Nella seduta del 6 dicembre 1980.
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By resonance we mean that the corresponding linear homogeneous boundary
value problem (¢ = 0) has a nontrivial subspace of solutions. In contrast
to the elliptic case, we often find that the subspace of solutions to the homo-

geneous problem is an infinite dimensional space. This feature is of particular
interest in our work.

We have followed Lions [7] and Lions-Magenes [8] in taking the view-
point that our partial differential equation is an ordinary differential equation
having meaning in a Hilbert space. Thus we consider mappings #: (0, T) >V
where V is a real Hilbert space of functions depending only on xe Q. In this
way the spatial boundary conditions on the lateral surface (o, T)XeQ will
be enforced by requiring « (£)e V (a.e.) te (0, T), while we may equivalently
replace (1.2) by

Byu=ayu(0) 4 apu (0) + by u(T) + b4’ (T)=0
By 2 = ay % (0) —!—a22u',(0) F by e (T) + b’ (T) =0

(1.3)

Boundary conditions (1.3) will then be equations in a Hilbert space. In this
setting we formulate a weak problem which properly generalizes the classical
problem. This formulation also generalizes the weak Cauchy problem of
Lions-Magenes [8, p. 265].

We have followed Cesari [1] and Hale [3] in dealing with the difficult
problem at resonance. After developing the necessary linear theory, we show
that many of these problems fit into the well-known framework of alternative
problems. We are then able to prove theorems on nonlinear perturbations
for these boundary value problems. The main theoretical tool used is the
implicit function theorem in Banach spaces. This is in contrast to the elliptic
case in which the Euclidean space version of the implicit function theorem
can be used. This reflects the possible infinite dimensionality of the kernel
for the problem.

I

§ 2. A STATEMENT OF RESULTS

Before stating our results we establish some notations. We will restrict
our attention to the situation in which H=12(Q) and V< H is a Hilbert
space of real-valued functions. We assume that V is dense in H. Let
us denote by L2(o,T;H) and L%*(o,T;V) the Hilbert spaces of norm
square integrable functions from (0o, T) -H and V respectively (cf.
Dunford-Schwartz [2]). We define the Hilbert space W (o, T) by (cf Lions-
Magenes [8])

W(o,T)rz {ueL2(0 T;V): ——eL2(o T;H)

where the derivative is a weak derivative (cf. Schwartz [11]). We also define
some subspaces of W (o, T). Let W,(o,T) be the closure in W(o,T) of
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Co’ (0o, T; V), the set of C* functions from (0, T) into V having compact
support in (0, T). Let Wy, (0, T) be the closure in W (0, T) of C, (0, T; V),
the set of C* functions from R into V which are T-periodic. Finally we let
W% (0, T) denote the Banach space

W* (@ ,T)={zclL”(0,T;V): %eL“(o,T;H)}
where again the derivative is a weak derivative. As a norm in W (o, T),

W, (0, T), and Wy, (0, T) we will use

2

- R du
| 2llw = I % L20,1;v) -+ H d¢ ll2em
while in W (0, T) we will use
du |
[ 2 ”w°° =l u ”L°°(0:T?V) + H dr {0 (0,T; H) '

Let A:V — V¥ the dual of V, be a continuous linear mapping and asso-
ciate to A the continuous bilinear form on V given by a (#,v) = (Aun,v)
Vu,veV. The bracket on the right represents the dual action of Axn
on z. We assume that @ (#,v) = a (v, ) for all #,ve V and that there
are numbers A, xe R with « > o such that

a(u,u) +n|ulfh=>alull vue V.

In addition we assume that there is a complete orthonormal basis, {w;}, for
V consisting of eigenfunctions for the operator A. We further assume that
{w;} is an orthogonal set in H. Let {A;} be the set of corresponding eigen-
values (not assumed to be distinct). We assume that A;=oforall i=1,2,---.

Consider the following linear problem

| d? z
(2.1) F—kAu-f, o<t<T,

(2.2) Byu=Byu=o0,

where B, # = B, # = 0 represents either Dirichlet, Neumann, or periodic
boundary conditions. Let W denote Wy(c,T), W(o,T), or Wy, (o, T) if
the boundary conditions are Dirichlet, Neumann, or periodic respectively.
We define a continuous bilinear form on W by setting
T

B(u,w):f[—(u',w')l{+a(u,w)]dt u,weW.

0

We say that # is a weak solution to (2.1)~(2.2) if e W and

(2.3) B (u,w) = (f,w)20,1;n Vwe W.
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If f is identically zero then we have the linear homogeneous problem
(2.4) 7 . Bu,w)=o0 _ Vwe W,

Let X, = {ne W :u satisfies (2.4)}. Clearly X, is a closed subspace of W.
Note that we have the case of resonance exactly when dimension (Xg) > 1.
Let X denote the point spectrum of the corresponding scalar problem

. 2 .
(2.5) Clltj) +r=o0, o<t<T,
(2.6) Bib=B,b=0,

and set o; = dist (A;, ).

THEOREM 1. a) Let fel?(o,T;H) and assume that all but a jfinite
number of the N\, are in L. There is a solution of problem (2.1)—(2.2) if and

only if
.7 S f, #y)L2(0,T; Hy = O 7 Vi€ X,.

If f satisfies the above condition then there is a umique solution wu, with the
property that w,e Xy. Here the orthogonality is taken with vespect to the
inner product in W. In addition, there is a constant ¢ >0 such that
I 221 llwoo < el f llzo,mimy -

b) Let fel?(o, T H) and assume that f has a weak derivative
df
L T2 B .
i L (0, T H)
If theve is a number o, > o suck that for all =1 ,2,3,... either
NEXD Or o,> 0, then there is a solution of problem (2.1)~(2.2) if and only

if [ satisfies (2.7). If [ satisfies this condition then there is a unique solution
uy with the property that w,e X\ and. a constant ¢ > o such that

2 1/2
1200, T; H)) ’

We now cénsider a nonlinear Nemytsky operator g:W(o,T)—
—~L2(0,T;H) generated by the real-valued function g:R —R. Let
feLl?(o,T; H) satisfy (2.7). We pose the nonlinear boundary value problem

2 o < ¢ (||fniz<o,T;H) + “ LA

(2.8) D Au=clg @) 11, 0o<i<T,

(2.9) B,u=B,u=o0,

where B,z = B, =0 again denotes either Dirichlet, Neumann, or periodic
boundary conditions. We say that » is a weak solution of (2.8)~(2.9)
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if ue W, where W=W,(0,T), W(o,T), or Wy, (0o,T) as before accor-
ding to the boundary conditions, and

(2.10) B(u,w)=c¢c (g +f,wro,r;n ‘ Vwe W.

THEOREM 2. We assume that g W (0, T)—>W>(0,T) is continuously
differentiable as a nomlincar map from any open ball about the origin into
W* (0, T). If, as a real-valued function, g(o)=o0 and g (0)F=0, then
for €, sufficiently small there is a unique local family of weak solutions,
{u(e):|e| < ey} of problem (2.8)~(2.9). Moreover the mapping v u(e)
is a continuous mapping with wu (0) =0 being the zero solution to the
homogeneous problem (2.4).

Remarks. 1) We remark that there are two different types of assumptions
imposed on g. One deals with its properties as a real-valued function while
the other deals with its smoothness as a map in Banach space. The later
condition can be reduced to a smoothness requirement on the real-valued
function g once V has been specified.

2) The arguments used to establish the above results are easily modified
to obtain previous results [4], [5], [6], [9], [10], [12] as special cases of the
above situation.

As an examiple we mention that Theorem 2 can be applied to the problem

”tt—ﬂm=s[g(%> +/1, (¢, x)e RX (0, m),
u(t,0)=u(t,m)=0, teR,
u(t+2m,x)=u(t,x), (z,x)e Rx(o, m),

where we assume that ge C3(R), g (0) =0,¢'(0) %0 and that feL?*(G),
G = (0,2 n)X (0o, ), is orthogonal to every solution of th: homogeneous
problem. A modification of Theorem 2, in which the orthogonality condition
is removed, can be proven provided that g is globally monotone. The details
of this and proofs of Theorems 1 and 2 will be given in forthcoming papers.
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