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M atem atica. —■ On the classification of functions in separable 
metric spaces <*>. N ota di S andro  L e v i , presentata (**) dal Corrisp. 
E . V e s e n t in i .

RIASSUNTO. — Si definisce una classificazione delle funzioni su uno spazio metrico 
separabile basata sulle proprietà delle immagini degli insiemi aperti. Si stabiliscono inoltre 
alcuni risultati per le funzioni della prima classe e le funzioni aperte.

T he classification of functions in m etric spaces based on properties of 
the inverse images of open sets is well-known: as a general reference to the 
topic we quote the first volume of K uratow ski’s m onograph [1]. T he purpose 
of this article is to assume a dual point of view and classify functions according 
to the properties of the images of open sets. M any results of the classical 
theory  can be reform ulated in the new setting but a basic difference with the 
previous situation appears: both the images of open and of closed sets have 
to be considered.

In  this paper, however, the emphasis will be on the images of open sets. 
For a study  of the Baire property  along the same lines see [3].

W e will define our classification, prove some general results, and then 
look at functions of the first class.

A t the end of the paper we will define the analogue of the oscillation and 
discuss some of its applications.

X will denote a separable m etric space, Y a topological space, a an  ordinal 
sm aller th an  m1-the first uncountable ordinal— and /  : X —* Y ' a function.

Definition i . Let Y be perfectly norm al. The function /  belongs to 
the djrect class a —denoted by f e  (a)— if the image of every open set under 
/  is a Borei set of additive class a in Y.

W e then have:

i) f e  (o) iff /  is open and f e  (1) iff f  m aps open sets into Fa sets 

it) every closed function belongs to (1) since each open set is an Fa 

in)  if f e  (a) and ß >  a , / e  (ß)

iv) if f  m aps open sets into Borei sets, there exists a such th a t f e  (oc) 
since X has a countable open base

v) since Borei sets have the Baire property, i f / e  (a) is onto, there 
exists a subset T  of Y which is the complement o f a set of the first category 
such th a t /  |/-'(T) : f ~ x (T) -> T  is open (see [3]).

(*) Lavoro eseguito nell’ambito del G.N.A.F.A. (C.N.R.).
(**) Nella seduta del 6 dicembre 1980.
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T h e o r e m  2. Let Y  be perfectly normal, f e  (a) i f  and only i f  Vs >  o 
there exists a sequence {Zf} of Borei subsets of Y  of additive class a with the 
property that fo r  every x e  X there exist m e  N and a subset W w of X such 
that x e  W m , f  (Wm) =  Zm and d iam  W m < z .

Proof. Let f e  (a). X being separable, there exists a sequence {Bn} of 
open balls such th a t X =  ( J  B.tt and diam  Bw< e V ^ e N .  P u t Z n = / ( B n).

n
T hen the sequence {Z^} fulfills the requirem ents of the theorem .

Suppose conversely th a t the above-stated condition is verified. Then 
Y k e  N there is a sequence such th a t each 7fn is of class a in Y.
Let G be open in X and let Z =  ( J  {Lkm : V ye  Zkm f - 1 (y) O G ^ 0 } .  It is

T c ,m

clear th a t Z . c / ( G )  and th a t Z is of additive class a.
Pick y e  f  (G) and x e G  such th a t y  = f  (x). Choose k and m  so th a t the 

ball of radius 1 \k centered at ^  is contained in G and there exists c  X 
such th a t ;r € , /  (W ^) =  Zkm and diam  YJkm <  1 jk. Then W ^c: G , y  e Zkm a  Z.
Thus Z = / (  G) and the theorem  is proved. //

As for sequences of functions of the direct class a, the usual concept of 
convergence is not suited to ensure th a t the limit function belong to the 
class (a).

Let f n : X -> Y be a sequence of surjective functions and let /  be onto. 
We will impose the following conditions:

a) V y e Y f ~ 1( y ) Œ ' L i f f 1 (y),  th a t is Y x e f ~ 1(y) there exist x n -+ x  
with x ne f f r (y)  y  n e  N.

b) Vs >  o , Y n e  N put =  {ze Y  : Yt e  f f 1 (z) I x e  f ~ x (z) : d ( t , x)<-z} 
where d  is the distance in X. Then Vs >  o every y e  Y  belongs to infinitely 
m any .

THEOREM 3. Let Y  be perfectly normal and let { f n} a n d f  verify conditions 
a) and b). Suppose further that each f ne (a) and that Vs >  o , \ f n e  N , F j is 
of additive class a in Y . Then f e  (a) .

Proof. F ix  £ >  o and pu t F^ =  F n . Then Y =  [ J  Fn.
n

Since each f ne (a), there exists for every n a sequence {Zi }fLi 
verifying the property  of Theorem  2. Thus Y =  ( J ( F wn Z ? )  where each 
F n n  Zf  is of class a in Y. n ,i

Fix x  in X. By a) and b) there exist k e N such th a t fÇx)  e F*. and 
t e f k x \ f  (fi)] such th a t d  (x , f) <  z.

Given k e  N , 3m e  N , ]W^ c  X such th a t t e  W* , f k (W ^) == Z* and 
diam  <  e. Furtherm ore for every z e Y k C\Zfm and every w e  f  p 1 (fi) D Wjj* 
there exists x e f ~ 1 (z) w ith d  (w , x) <  s.

P u t W  — {x — x  (w)  : w e f k l (fi) O W  km , z e  ¥ k n  Z^} U {x} .
T hen / (  W) — F^ P) Zkm and diam  W  <  6z. Thus f e  (a). // ■
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W e are now going to consider the functions of the first direct class. Let 
us pu t K  =  {xe  X : /  is not open at x } and let ^  be an open base for X.

Lemma 4. / ( K )  =  (J  [ / (A )  —  In t / ( A ) ] .
A e 38

Proof. If  x e  K there exists A g  ^  such th a t x e  A  and f ( x ) e f ( A) — 
— I n t / (A ) .  Conversely let y e  / ( A )  — I n t / ( A )  for some A e  J .  Then there 
is x  e A  such th a t y  =  f  (x) • /  (A) is not a neighbourhood of y  and x  e K. /I

T h e o r e m  5. Suppose f  maps open sets into F 0 sets. ThenfÇK)  is an F 0 
of the first category in  Y .

Proof. Since X is separable it has a countable open base {Gw} .
00

For every n , / ( Gn) =  ( J  F™ where each Fs is closed.
s = 1  00

T hus /  (Gn) — In t f  (Gj) =  ( J  F« — In t f  (Gn) is an F0 with em pty
s=  1

interior and is therefore of the first category in Y.
By Lem m a 4 the same conclusion holds f o r / ( K j .  //

C o r o l l a r y  6. Let Y  be a Baire space and f  a surjective function which 
maps open sets into F 0 sets. Then C f (K)— the complement of / ( K )— is a 
dense G§ in Y and f  is open at every x e  f~ x [C /(K )].

As an im m ediate consequence we have K uratow ski’s result ([2], p. 176) 
stated for X com pact and /  continuous.

COROLLARY 7. Let Y  be a Baire space and f  a closed surjective function.
Then there exists B e  X such that / ( B )  =  Y , /  is open at every point 

of B and f  |b • B -> / ( B )  is open.

Proof. P u t B =  f - 1 [C /(K )]. Then / ( B )  = / ( B) =  Y since /  is closed 
and / ( B )  is dense in Y. L e t ^ e B .  B y corollary 6 f  is open at x: if A 
is anÿ  open neighbourhood o f x , f ( A )  is a neighbourhood of f  (x); since 
/  (A O B) =  /  (A) O /  (B) it follows th a t /  | b * B —►/ (B) is open at # 
and thus open. //

T he preceding corollary can be viewed as a partia l dual (in the open-closed 
duality) of a result of M ichael ([4] Corollary 1.2. (a)).

L et us now look at open function and define

Yf(x) — in f {d iam Z  : i g  Z c X  y f  (fi) is open in Y} 

or Yj(x)  =  +  00 if there is no such Z.

Lemma 8. f  is open at x  i f  and only i f  yf (x) =  o.

Proof. L et /  be open at ^  and e > o. P u t S =  S (x , s/4), the open ball 
of radius 0/4 centered at x. T hen  f ( x ) e  I n t /  (S) and we can find Z c S  such 
th a t x e Z  and / ( Z) =  I n t / ( S). Since d iam S  <  e/2 we have yf (x) <  e and 
we conclude tha t yf (x) =  o.
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Suppose now th a t yf (x) =  o and pu t Sr =  S (r , *) for r >  o.
There exists Z c  X , Z such th a t / ( Z )  is open in Y and diam  Z <  r. 

Then Z c  Sr and /  is open at x. //

Lemma 9. I f  f  is continuous at x 0 , ŷ . is upper semicontinuous at x 0.

Proof. If  Yy(^o) =  +  00 there is nothing to prove.
Let Yy(x0) < r  and choose Z c  X such th a t x 0e Z , / ( Z )  is open in Y 

and diam  Z < r .  Since /  is continuous at x 0, there exists a neighbourhood 
V of x 0 such th a t V c= f ~ xf  (Z).

P ut s =  r — diam  Z and W  =  V H vS (x0 , s/2). Define Zx =  Z U {#} 
Va: g W. T hen  /  (Z^) —/  (Z) and diam  Zx <. d  (x , x 0) +  diam  Z <  r.

We conclude th a t yf ( x ) < r  V ie  W  and y  ̂ is upper semicontinuous 
at x 0. II

Com bining the two preceding lemmas we obtain the known.

COROLLARY 10. I f  f  is continuous the set of points at which f  is open 
is a G§.

Using the coefficient y we can state a modified version of corollary 6 
which is less precise as to the values of y but is valid for open images.

THEOREM i i . Let Y  be a Baire space and f  a surjective function which 
maps open sets into F0 sets. Then \ fne  N there exists A  n a  X such that / ( A n) 
is a dense open subset of Y and fo r  every x  € A n , yf  (x) <  1 j n .

Proof. L et {xm} be ä dense subset of X.
For every n , m-e N let be an open ball centered at xm w ith diam eter 

sm aller than  1 \n . ^
Since/e. ( i) /(B m ) =  (J Fm,k where each is closed in Y. Y being

fc=1
a Baire space1, W w =  ( J  In t FZ,k is dense in Y.

Jc,m

I f  y e  W n there are m  , k such th a t y e  In t F ^ ^  and ^ g  B^ w ith y  =  f  (x). 
Since In t Fm,k <= / ( B^) we see th a t yf (x) < i\n.

To end the proof set

A n =  {x :^^g B^ O f - 1 (y) : y e  In t F ^  for some m  , k} . II

W e conclude with two general rem arks.
W e can define, as was pointed out in the introduction, a new class [a] 

consisting of functions which m ap closed sets into Borei subsets of m ulti­
plicative class a. T hen  [ot]c: (oc +  1). B ut the classes [a] do not seem too 
handy  due m ainly to the fact th a t intersections and images do not commute.

F inally  definition 1 can be stated in general m etric spaces. It would be 
interesting to know to w hat extent the preceding results can be generalized.
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