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RENDICONTI
DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta del 6 dicembre ig8o  

Presiede i l  Presidente della Classe Giu s e ppe  Mo n t a l e n t i

SEZIONE I
(Matematica, meccanica, astronomia, geodesia e geofìsica)

Matematica. — On the baire property in separable metric spaces <*•'. 
Nota di Sandro Levi, presentata (**> dal Corrisp. E. V esen tin i.

R i a s s u n t o . — Si studiano le funzioni che applicano gli aperti in insiemi con la proprietà 
di Baire. Si caratterizzano gli spazi analitici che sono di Baire e si stabiliscono alcuni risultati 
sulla struttura degli spazi polacchi. Si dà infine una dimostrazione del teorema di Banach 
dell’applicazione aperta per gruppi separabili.

In this article we investigate the properties of functions defined on 
separable metric spaces which map open sets into sets that have the Baire 
property.

Much is known about functions for which the inverse images of open 
sets have the Baire property: see for instance [4].

We will first establish some preliminaries and give a characterization 
of analytic spaces which are Baire spaces, and then deduce, with the aid of 
a selection theorem due to Kuratowski and Maitra, some results on polish 
spaces; notably that every polish space is the completion of a suitable closed 
set of the irrationals for a metric which is equivalent to the euclidean metric.

As a last application we give a simple proof of the Banach open 
mapping theorem for groups.

(*) Lavoro eseguito nell’ambito del G.N.A.F.A. (C.N.R.). 
(**) Nella seduta del 6 dicembre 1980.

22 — RENDICONTI 1980, voi. LXIX, fase. 6.
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X will denote a separable metric space, Y a topological space and /  : X —>• Y 
a surjective function.

A subset B of X has the Baire property if it is open modulo first category 
sets, that is if B == (A — P) U R where A is open in X and P and R are first 
category sets.

B has the Baire property in the restricted sense if B f l E  has the Baire 
property in E for every E in X.

A set is analytic if it is the continuous image of a Borei subset of a com 
plete separable space. Analytic sets have the Baire property in the restricted 
sense.

For these notions we refer to [4] (§ i i  and § 39).

D e f in i t io n  i . /  has the direct Baire property (d.B.p.) if the image 
of every open set under/  has the Baire property in Y.

Th e o r e m  2. f  has the d.B.p. i f  and only i f  there exists a set P of the first 
category in Y such that i f  we p u t g  = /  | / - i (cp) ,g  • / “1 (CP) —*CP is open. 
(CP %is the complement of P).

Proof. Suppose /  verifies the above-stated condition and let G be open 
in X. Then G =  [G O / -1 (CP)] U [G O / -1 (P)] and therefore

/ (G )  =  [ /(G )n C P ] u  [ / ( G ) n  P] =  (W n C P ) u  [ f  (G) n  P]

where W is open in Y. This proves th a t /(G )  has the Baire property in Y. 
Conversely let /  have the d.B.p. and let {Gn} be an open base for X. 
Then Wn'.e N f  (Gn) — (W n — Vn) U R n where W n is open in Y and Fn 

and R n are of the first category.
Put

p =  ( u  p„) u  ( y  r *).

Then P is of the first category.
Let H be open in f~ x (CP). Then

00
h  = (J [G^nZ-VCP)]

and

* (H )  = / ( H )  =  U '[ / ( G „ )  n  CP] -  U  { [ ( W ^ - P ^ )  U R J  n  CP)
k k

=  ( U  w „ )  n  c p

and g  is open. //
The next lemma furnishes a wide class of functions with the d.B.p.:

L e m m a  3. Let X be a polish space, Y a metric space and f  continuous. 
Then /  has the d.B.p.
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Proof. Let Ÿ be the completion of Y. For every A open in X ,/ ( A )  is 
analytic in Y and therefore has the restricted Baire property. Thus 
/ (A )  O Y =  / (A )  has the Baire property in Y and /  has the d.B.p. //

The preceding Lemma and Theorem 2 enable us to characterize the 
analytic spaces that are Baire spaces:

THEOREM 4. Let X be a polish space, Y a metric space and f  continuous. 
Then: i) Y is Baire if and only if there exists a dense G§ D in Y such that 
/I r^ D )  isopen ;

ii) Y is of the second category (in itself) if and only if there 
exists a G§ D ' dense in some non-empty open subset of Y such that 
/  IrbD') :/ -1 (D ') -* D ' is open.

Proof, i) Suppose Y is Baire. By Lemma 3 and Theorem 2 there exists 
a first category set P in Y such that /  |/-i(C P) is open. P is contained in a 
first category F0 , P \  Then D =  CP' is a dense G§ a n d / | / - i (D) is open.

Suppose conversely that the condition of the theorem is verified.
T h e n / -1 (D) is a G§ in X and thus topologically complete. By Haus- 

dorff’s theorem ([2] th. 1) D is also topologically complete and hence a Baire 
space. It follows that Y is a Baire space.

ii) follows from i) and the fact that a topological space is of the second 
category if and only if it contains a non-empty open Baire subspace ([3] 
th. 1.26). I]

COROLLARY 5. Suppose X is a separable metrizable space under two 
topologies and t 2 and that Tj. is finer than t 2 . Suppose further that (X , t 2) 
is Baire and that every t x~open set has the Baire property fo r  t 2 (the last condi 
tion is verified i f  (X , t x) is topologically complete). Then there is a subset D 
which is a fense  G § fo r  t 2 on which and  t 2 agree.

As an example we can consider the closed unit ball of a separable Hilbert 
space under the norm and weak topologies.

We now derive some results on the structure of polish spaces.

THEOREM 6. Let X be a polish space, Y a Baire metric space and f  con 
tinuous. Then f  induces by restriction a homeomorphism between a G§ in X 
and a dense G§ in Y .

Proof. By Theorem 4 i) there exists a dense G§ D in Y such that 

/ D - Z I r b D ) : / - 1^ ) - 1) isopen .

By a result of Kuratowski and M aitra [5] there is a G§ selection S in 
f - 1 (D) for the partition induced by /d  .

Put g  =fr> Is ; then g  : S —> D is continuous and one-to-one.
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Again by Theorem 4 there exists a dense G§ G in D such that 

h = £ 'l i r 1(G) is open.

h is a homeomorphism and G is dense in Y. //

COROLLARY 7. I f  X and Y are polish spaces and f  is continuous, Y is 
homeomorphic to the completion (H , p) where H is a G§ in X and  p a metric 
compatible with the topology of H.

Proof. Let d  be a metric on Y such that (Y , d) is complete. With h 
and G as in the preceding theorem put H =  h~l (G) and define

p {pc, x') =  d  [h (x) , h (V)]

Then (H , p) =  (G , d) =  (Y , d), where the equal sign means “ iso 
metric t o ” . II

Co r o l l a r y  8. Let X be any polish space. Then there exist a closed subset 
H of the irrationals and a metric $ on H which is equivalent to the euclidean 
metric such that X is homeomorphic to (H , p) .

Proof. Given X there is a continuous map of the irrationals onto X. 
Since every G§ of the irrationals is homeomorphic to a closed set ([4] § 36 
II), it is enough to apply corollary 7 to complete the proof. //

Co r o l l a r y  9. Every polish space admits a dense G§ of dimension zero.

We will now give an application to topological groups. (Cf. Banach [1] 
chapters I and III).

We will use the following known:

L e m m a  10. Let T and  V be topological spaces verifying the firs t axiom  
of countability and g  : T -* V surjective. Then g  is open at x e  T i f  and only 
i f  fo r  every sequence y n ->g (x), there exists a sequence x n -+x  such that
V n — g  (x rò V« 6 N.

A simple proof of this lemma will be given at the end of the paper.

THEOREM i i . Let X and Y  be topological groups with Y a Baire space 
satisfying the firs t axiom of countability. Let f  be a surjective homomorphism 
with the d.B.p. Then f  is open.

Proof. It is enough to prove that f  is open at e> the neutral element of
X. Let y n -> e (the neutral element of Y).

By Theorem 2 there exists P of the first category in Y such that
g  = / I/ - 1 (CP) is open.

y n P is of the first category for every n and so is P U I ( J  y n P I .
/ \  \  » /

Since C ^ P ) = ^ C P , C P O  O ^ C P  is non-empty and let y
n \  n J

belong to this subset. Thus y  and y L V e  CP V ^ e N .
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Let x e f ~ x{y). Since g  is open at x  and y ^ 1 y  - * y , by Lemma io there 
is a sequence x n - ^ x  such that f  (xn) =  y ü 1 y  V n e  N.

But then xx~x e and f  ( xx^1) =  f  ( x ) f  (x^ - 1 =  y y -1 y n =  y n .
This shows that /  is open at e. 11

C o r o l la r y  12. Let X and  Y be topological groups with X <2 polish space 
and  Y Baire metric. Let f  be a continuous surjective homomorphism. Then 
f  is open.

The proof follows from Lemma 3 and the preceding theorem.
We conclude by proving Lemma 10 in the case T is a metric space. In [6] 

we define the coefficient y as

y g (.x) =  inf {diam Z : x e Z  ,g (Z )  is open in V}

or yg (x) = 4 - 0 0  if there is no such Z, and proved that g  is open at x  if 
and only if yg (x) — o.

Suppose now that g  is not open at x. Then there exists a neighbourhood 
A of x  such that y  =  g  (x) $ Int^-(A).

Let {E^} be a decreasing base of neighbourhoods of y.  Then \Jne N 
there is y ne Ew — g  (A) and the sequence { y n} tends to y. Suppose that x n ^ x  
and that g  (xn) =  y n for every n. There exists n0 : Vn >  n0 x ne A  which 
implies y ne g (A) .  Thus no such sequence {xn} can exist.

Suppose that g  is open at x. Then yg(x) =  o and for every >èeN there 
is Zk such that Zk , g ( Z k) is open and diamZ^. <  \\k.

We can suppose that the g ( Z ^ ’s are decreasing. Let y n —̂>y.
Take n =  1 and let ^ e N  be the smallest index such that y ne g ( Zx) 

for every n ^ > n x. Select x ni e Zx such that g  (xnj) =  y ni.
Suppose we have chosen x nk. Let nk+1 be the smallest index greater 

than nk and such that y nGg  (Zk+1) for every n > n k+x.
Select x ni+1 e Zk+1 such that g  (xnt+1) =  y ni+1.
It is clear that lim x nk =  x.

00

We complete the sequence { x ^  by picking any x . ^ g ^ ^ y j )  for every 
y n $ g ( Z  1) and by selecting any x ne Zk O gy1 Qyn) for every nk < n <  nk+1. 11
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