ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Anna Luisa Gilotti, Luigi Serena

On the existence of normal Sylow p-complements

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **69** (1980), n.5, p. 228–231. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1980_8_69_5_228_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Algebra. — On the existence of normal Sylow p-complements. Nota (*) di Anna Luisa Gilotti e Luigi Serena, presentata (**) dal Socio G. Zappa.

RIASSUNTO. — Nella Nota gli autori danno una nuova condizione necessaria e sufficiente per l'esistenza di p-complementi di Sylow normali nei gruppi finiti.

Introduction

In this note we give a new condition on the existence of normal p-complements in finite groups. Such a condition uses the notion of p-W-chain i.e. a chain of the following type:

$$\langle \mathbf{I} \rangle = \mathbf{V_0} \unlhd \mathbf{V_1} \unlhd \cdots \unlhd \mathbf{V_r} = \mathbf{S}$$

where S is a Sylow p-subgroup of G, $V_i (i = 1, \dots, r)$ is weakly closed subgroup in S w.r. to G, $V_i/V_{i-1} \leq Z(S/V_{i-1})$.

This definition generalizes the p-I-chain definition, introduced in [2].

The main result is the following

THEOREM A. A finite group G has a normal p-complement if and only if the following conditions are satisfied:

- 1) G has a p-W-chain
- 2) $(|N_G(S):C_G(S)|, p^h-1)=1$ for all $h, 1 \le h \le n$

where $n = \max r_i$, $r_i = number$ of generators of V_i/V_{i-1} . $(i = 1, \dots, r)$

The existence of the kernel in a Frobenius group where the complement is a p-group is an example of immediate consequence of Theorem A.

In the second section the theorem is used to give conditions for the existence of non trivial p-factors.

Any group is finite, the notation is standard (cf. [3]). In particular, $S_p(G)$ is the set of Sylow p-subgroups of G and S indicates an element of $S_p(G)$.

1. First of all we prove the elementary

LEMMA. Let N be a normal subgroup of G, V be a subgroup which is weakly closed in S w.r. to G. Then VN/N is weakly closed in SN/N w.r. to G/N.

- (*) Eseguita nell'ambito dell'attività del G.N.S.A.G.A. del. C.N.R.
- (**) Nella seduta dell'8 novembre 1980.

Proof. Let VN/N, V^x N/N be contained in the same Sylow p-subgroup SN/N of G/N. $S \in S_p$ (SN). Since V^x is a p-subgroup of SN, there exists $y \in N$ such that $V^x \leq S^y$. Since V is weakly closed in S w.r. to G, and V^x , $V^y \leq S^y$, then $V^x = V^y$. It follows V^x N = V^y N. Since $y \in N$, V^y N = VN. So V^x N/N = VN/N.

Proof of Theorem A.

Necessity. Let $N=N_G(S)$. Since G has a normal p-complement K, $K\cap N$ is a normal p-complement in N. Then $N=(K\cap N)\times S$. So $\mid N_G(S):C_G(S)\mid$ is a power of p. By Theorem 2.2 [2] G has a p-I-chain, thus, since n=1, $(\mid N_G(S):C_G(S)\mid$, p-1)=1.

Sufficiency. Assume that G verifies the hypotheses I and 2 of Theorem A. Let $\langle {\tt I} \rangle = V_0 \unlhd V_1 \unlhd \cdots \unlhd V_r = S$ be a p-W-chain of G. We prove the theorem by induction on $|{\tt G}|$. Let $N_1 = N_{\tt G}(V_1)$. If $N_1 < G$, since N_1 verifies the same hypotheses as G, N_1 has a normal p-complement. V_1 is weakly closed in S and $V_1 \subseteq Z(S)$, then by Grun's II theorem and Tate's theorem, $N_1/O^p(N_1) \cong G/O^p(G)$.

Hence G has a normal p-complement and we are done.

So we can assume $N_1 = G$. Let $\overline{G} = G/V_1$, and $\overline{V}_i = V_i/V_1$ $(i = 2, \dots, r)$.

By Lemma, $\overline{V}_i (i=2,\dots,r)$ is weakly closed in $\overline{S} = \overline{V}_r$ w.r. to G.

Furthermore, $\overline{V}_i/\overline{V}_{i-1} \leq Z(\overline{S}/\overline{V}_{i-1})$ and $\overline{V}_i/\overline{V}_{i-1} \cong V_i/\overline{V}_{i-1}$.

Also $N_{\overline{G}}(\overline{S}) = N_G(S)/V_1$ and $C_{\overline{G}}(\overline{S}) \geq C_G(S)/V_1$, therefore $(\mid N_{\overline{G}}(\overline{S}) : G_{\overline{G}}(\overline{S}) \mid , p^h - 1) = 1$ for all h, $1 \leq h \leq n$, $n = \text{number of generators of } \overline{V}_i \overline{V}_{i-1} (i = 2, \dots, r)$. By induction, G has a normal p-complement $\overline{K} = K/V_1$. If K has a normal p-complement, the same is true for G. So let us assume that K has not a normal p-complement. Let $O_{p'}(G) \neq 1$, and N be a normal p'-subgroup of G, $N \neq 1$. Let $G^* = G/N$ and A^* be the image of a subgroup A of G in the natural homomorphism of G over G^* . By Lemma $\langle I \rangle = V_0^* \leq V_1^* \leq \dots \leq V_r^* = S^*$ is a p-W-chain of G^* . Also $V_i^*/V_{i-1}^* \cong V_i/V_{i-1} (i = 1, \dots, r)$ and $|N_{G^*}(S^*) : C_{G^*}(S^*)|$ divides $|N_G(S) : C_G(S)|$, so G^* verifies the same hypotheses as G. By induction, G^* has a normal p-complement R^* whose preimage R is a normal p-complement of G. So we can assume $O_{p'}(G) = 1$.

Since V_1 is a normal Sylow p-subgroup of K, by the Schur-Zassenhaus theorem, K has a p-complement M and all the complements are conjugate. By Frattini's argument $G = KN_G(M) = V_1N_G(M)$.

Let us consider the action of G on the set Ω of the conjugates of M. G acts transitively on Ω , so if Q is the kernel of this representation, $\hat{G} = G/Q$ is a transitive permutation group on Ω . We want to prove that Q is a p-group.

Let a be a p'-element of Q. Since $Q = \bigcap_{x \in G} N_G(M^x)$, $\langle M^x, a \rangle$ is a p'-group for any $x \in G$. But M^x is a Hall p'-subgroup, then $a \in M^x$. It follows that $a \in \bigcap_{x \in G} M^x \le O_{p'}(G) = \langle 1 \rangle$.

Thus Q is a p-group and, since $Q \subseteq G$, $Q \subseteq S$.

Since $G=V_1N_G(M)$, V_1 acts transitively on Ω . So $\hat{V}_1=V_1Q/Q$ is a transitive subgroup of \hat{G} . V_1 is abelian, so it is self-centralizing in \hat{G} . Let $\hat{S}=S/Q$. From $V_1\leq Z(S)$ it follows $\hat{V}_1\leq Z(\hat{S})$, and then $\hat{V}_1=C_{\hat{G}}(\hat{V}_1)\geq \hat{S}$. Therefore $\hat{V}_1=\hat{S}$, i.e. $S=V_1Q$. So S is normal in G. $G=N_G(S)$, $C_G(S)\leq C_G(V_1)$. It follows that $|N_G(V_1):C_G(V_1)|$ divides $|N_G(S):C_G(S)|$. So $|N_K(V_1):C_K(V_1)|$ is prime to $|Aut(V_1)|$ by theorem 3.19 (pag. 275, [7]). It follows $N_K(V_1)=C_K(V_1)$. By Burnside's theorem, K has a normal p-complement, a contradiction.

COROLLARY. A finite group G has a normal Sylow p-complement if and only if G has a chain of the type:

$$\langle \mathbf{I} \rangle = \mathbf{V_0} \unlhd \mathbf{V_1} \unlhd \cdots \unlhd \mathbf{V_r} = \mathbf{S}$$

where V_i ($i = 1, \dots, r$) is weakly closed in S w.r. to G, $V_i/V_{i-1} \le Z(S/V_{i-1})$, V_i/V_{i-1} cyclic and $(|N_G(S):C_G(S)|, p-1)=1$.

2. DEFINITION. Let V be a subgroup which is weakly closed in S w.r. to G. We will call p-W-chain connecting V and S any chain of the type:

$$V = V_0 \unlhd V_1 \unlhd \cdots \unlhd V_r = S$$

where V_i ($i = 1, \dots, r$) is weakly closed in S w.r. to G and $V_i | V_{i-1} \le Z(S | V_{i-1})$.

PROPOSITION B. Let V be a subgroup which is weakly closed in S w.r. to G, V \neq S. Suppose that $[x, y, \dots, y] \in \Phi^*(V)$, $x \in S$, $y \in V$ (where $\Phi^*(V)$)

is the intersection of the subgroups of V of index at most p^2). Furthermore suppose that

- 1) G has a p-W-chain connecting V and S
 - 2) $(|N_G(S):C_G(S)|,p^h-1)=1$ for all h, $1 \le h \le n$

where $n=\max r_i$, $r_i=$ number of generators of V_i/V_{i-1} $(i=1,\cdots,r)$. Then $O^p(G)< G$.

Proof. By induction on |G|. Let $N = N_G(V)$. If N < G, N verifies the same hypotheses as G, thus, by induction $O^p(N) < N$. By Corollary 4.3.1 ([5]), $N/O^p(N) \cong G/O^p(G)$. So $O^p(G) < G$.

Let us assume N=G. Let $\overline{G}=G/V$. If V=I, by Theorem A we have the desired conclusion. If $V\neq I$, $|\overline{G}|<|G|$, and \overline{G} has a p-W-chain. Let $\overline{S}=S/V$. We have $N_{\overline{G}}(\overline{S})=N_G(S)/V$ thus $|N_{\overline{G}}(\overline{S}):C_{\overline{G}}(\overline{S})|$ divides $|N_G(S):C_G(S)|$. Then by induction, $O^p(\overline{G})<\overline{G}$ and so $O^p(G)<\overline{G}$.

Remark. By using the same proof and the Corollary 4.6.2 [5] we can prove the following

PROPOSITION C. Let V be a subgroup which is strongly closed in S w.r. to G, and weakly regular (for the definition see [5]).

Let $V \neq S$. Suppose that G satisfies the hypotheses 1 and 2 of Proposition B.

Then $O^{p}(G) < G$.

REFERENCES

- [1] A. L. GILOTTI and L. SERENA (1977) p-Iniettori nei gruppi p-risolubili, « Rend. Acc. Naz. dei Lincei », 62, 423-427.
- [2] A. L. GILOTTI and L. SERENA (1978) p-Injectors and finite supersoluble groups, «Rend. Acc. Naz. dei Lincei», 63, 164–169.
- [3] D. GORENSTEIN (1968) Finite Groups. Harper and Row.
- [4] H. WIELANDT (1964) Finite permutation groups. Accademic Press.
- [5] T. Yoshida (1978) Character theoretic transfer, « Journal of Algebra », 52, 1-35.
- [6] Z. ARAD and D. CHILLAG (1979) Injectors of finite solvable groups, «Comm. in Algebra», 7 (2), 115-138.
- [7] D. HUPPERT (1967) Endliche Gruppen I. Springer-Verlag.