Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali Rendiconti

Antonio Lanteri

On the existence of scrolls in P^{4}

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 69 (1980), n.5, p. 223-227.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1980_8_69_5_223_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

RENDICONTI

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI Classe di Scienze fisiche, matematiche e naturali

Seduta dell' 8 novembre 1980
Presiede il Socio Anziano Vincenzo Caglioti

SEZIONE I

(Matematica, meccanica, astronomia, geodesia e geofisica)

Geometria. - On the existence of scrolls in $\mathbf{P}^{4}{ }^{\left({ }^{(}\right)}$. Nota di Antonio Lanteri (*), presentata ("*) dal Socio G. Zappa.

RiAssunto. - Si dimostra il seguente risultato. Sia X una superficie proiettivamente rigata, non iperpiana, di \mathbf{P}^{4}; allora X è la rigata cubica oppure è una rigata quintica ellittica. Si descrive inoltre una nuova generazione proiettiva delle rigate quintiche ellittiche di \mathbf{P}^{4}.

i. Introduction

In this paper we prove the following: let $\mathrm{X} \subset \mathbf{P}^{4}$ be a scrollar surface not lying in any hyperplane (we consider only smooth surfaces); then X is either the cubic rational scroll or the quintic scroll over an elliptic curve. This confirms a conjecture expressed in a previous paper on surfaces in \mathbf{P}^{4} ([4]), where the same fact was proved only for scrollar surfaces of degree $d<$ ir. In particular it turns out that in \mathbf{P}^{4} there are no scrollar surfaces with irregularity $q>1$ and this agrees with a circulating conjecture on the existence of a bound for the irregularity of the surfaces in \mathbf{P}^{4}. In fact, but the elliptic scrolls, a unique class of irregular surfaces in \mathbf{P}^{4} is still known: the abelian surfaces of degree $d=10$ studied by Horroks and Mumford ([2]).

[^0]Here is a sketch of our proof. Consider a scroll $\mathrm{X} \subset \mathbf{P}^{4}$ of degree d and the associate curve C_{X} in the Grassmannian of the lines of \mathbf{P}^{4}. By means of a basic formula proved in [4] we can express the genus of C_{X} as a polynomial in d. Then by applying to C_{X} the Castelnuovo inequality for the genus of a curve in \mathbf{P}^{n} we prove that $d \leq 5$. This is enough to conclude.

In the last section we supply a new projective construction of the quintic scroll in \mathbf{P}^{4} over a given elliptic curve.

$$
\text { 2. } \mathbf{P}^{4} \text { CONTAINS NO SCROLL OF DEGREE } d>5
$$

Let $\mathrm{X} \subset \mathbf{P}^{n}$ be a complex irreducible smooth algebraic surface; if there exists a morphism $p: \mathrm{X} \rightarrow \mathrm{B}$ over an (irreducible and smooth) curve B , each fibre of which is a line, X is said to be a scroll over B . Denote by $q(\mathrm{X})$ and $g(\mathrm{~B})$ the irregularity of X and the genus of B respectively. If X is a scroll over B , then $q(\mathrm{X})==g(\mathrm{~B})$.

Throughout this paper we consider scrolls embedded in the four dimensional projective space \mathbf{P}^{4}. First of all we have the following basic formula.

Lemma 2.1. Let $\mathrm{X} \subset \mathbf{P}^{4}$ be a_{1} scroll of degree d and irregularity q. Then

$$
\begin{equation*}
q=\frac{\mathrm{I}}{6}(d-2)(d-3) \tag{2.I}
\end{equation*}
$$

For a proof see [4], Proposition 3.1.
Consider now the Grassmann manifold $G=\operatorname{Grass}(2,5)$ of the lines of \mathbf{P}^{4}. As it is well known, G is a six dimensional algebraic manifold of degree five embedded in \mathbf{P}^{9}. Denote by C_{x} the curve in G corresponding to a scroll $X \subset \mathbf{P}^{4}$, and by $\left\langle\mathrm{C}_{\mathrm{X}}\right\rangle$ its linear span.

Remark 2.I. Let $\mathrm{X} \subset \mathbf{P}^{4}$ be a scroll of degree d and irregularity q. Then
i) C_{X} is a smooth curve of degree d and genus q;
ii) if $d>5, \operatorname{dim}\left\langle\mathrm{C}_{\mathrm{X}}\right\rangle \geq 5$.

For i) see [5], p. 28I. To see $i i$) suppose $\operatorname{dim}\left\langle\mathrm{C}_{\mathrm{X}}\right\rangle \leq 4$. Then C_{X} is a component of the curve section of G with a four dimensional linear space L of \mathbf{P}^{9}. As G has degree five, this implies $d \leq 5$.

Consider now integers r, h, k, such that

$$
\begin{equation*}
\mathrm{o} \leq k \leq r-\mathrm{I}, \tag{2.2}
\end{equation*}
$$

and the polynomial

$$
\begin{equation*}
\mathrm{F}(r, h, k)=r(r-3) h^{2}+2 k(r-3) h+(k-1)(k-2) . \tag{2.3}
\end{equation*}
$$

Lemma 2.2. Suppose

$$
\begin{equation*}
4 \leq r \leq 8 \tag{2.4}
\end{equation*}
$$

and $h \geq 2$; then

$$
\begin{equation*}
\mathrm{F}(r, h, k)>0 . \tag{2.5}
\end{equation*}
$$

Proof. Consider $\mathrm{F}_{r, k}(h)=\mathrm{F}(r, h, k) \in \mathbf{Z}[r, k][h]$, and denote by $h_{1}=h_{1}(r, k), h_{2}=h_{2}(r, k)\left(h_{1} \leq h_{2}\right)$ the roots of the equation $\mathrm{F}_{r, k}(h)=0$. Suppose $\mathrm{F}(r, h, k) \leq 0$; it is sufficient to see that if (2.4) holds, then

$$
\begin{equation*}
h_{2}<2 . \tag{2.6}
\end{equation*}
$$

Let $\Delta=\Delta(r, k)$ be the discriminant of $\mathrm{F}_{r, k}(h)$ and $k_{m}=\frac{1}{2} r$. Then $\Delta\left(r, k_{m}\right) \geq \Delta(r, k)$ if r and k satisfy (2.4) and (2.2) respectively. Now, recalling (2.3), we have

$$
h_{2} \leq \frac{1}{r}(\sqrt{\Delta / 4}-k) \leq \frac{\mathrm{I}}{r} \sqrt{\Delta / 4} \leq \frac{\mathrm{I}}{r} \sqrt{\Delta\left(r, k_{m}\right) / 4} .
$$

Thus a straightforward calculation of $\Delta\left(r, k_{m}\right)$ with r as in (2.4) gives (2.6).
It is well known that \mathbf{P}^{4} contains a cubic rational scroll (i.e. the Steiner surface of \mathbf{P}^{4}) and the quintic elliptic scrolls with invariant $e=-\mathrm{I}$ corresponding to the general curve sections of the Grassmannian G. It is also known that \mathbf{P}^{4} contains no other scroll of degree $3 \leq d \leq 5$. Now we can state the following

Theorem 2.I. Let $\mathrm{X} \subset \mathbf{P}^{4}$ be a scroll (not lying in any hyperplane ${ }^{(1)}$); then either
i) X is the cubic scroll, or
ii) X^{\dagger} is a quintic elliptic scroll.

Proof. If X has degree $d \leq 5$, the theorem is trivial. Suppose X is a scroll of degree $d>5$ and consider the curve C_{X}. By Remark 2.I we can suppose $\operatorname{dim}\left\langle\mathrm{C}_{\mathrm{X}}\right\rangle=r+1$ where r satisfies (2.4). Therefore, since C_{X} is a curve in \mathbf{P}^{r+1} not lying in any hyperplane, its genus $g\left(\mathrm{C}_{\mathrm{X}}\right)$ must satisfy the following inequalities (cf. [I], p. 253):

$$
g\left(\mathrm{C}_{\mathrm{X}}\right) \leq\left\{\begin{array}{llr}
d-r-\mathrm{I} & \text { if } & r+\mathrm{I}<d \leq 2 r+\mathrm{I} \tag{2.7}\\
r+2 & \text { if } & d=2 r+2 \\
\binom{m}{2} r+m \varepsilon & \text { if } & d>2 r+2
\end{array}\right.
$$

(r) The unique scroll in \mathbf{P}^{3} is the quadric surface.
where $m=[(d-1) / r], \varepsilon=d-1-m r$ and [] is the least integer function. On the other hand, $g\left(\mathrm{C}_{\mathrm{X}}\right)=q(\mathrm{X})$ and by Lemma $2.1, q$ is given by (2.1). Now, if $r+1<d \leq 2 r+2$ it is easy to see that the first two inequalities in (2.7) cannot be satisfied. Otherwise, if $d>2 r+2$ we can write $d-\mathrm{I}=h r+k$ where
(2.8) $\quad h \geq 2 \quad$ and \(\left.\quad \begin{array}{l}0

2\end{array}\right\} \leq k \leq r-\mathrm{I} \quad\)| if $h>2$ |
| :--- |
| if $h=2 ;$ |

thus $m=h$ and $\varepsilon=k$ in (2.7) and the third inequality in (2.7) is equivalent to

$$
\mathrm{F}(r, h, k) \leq 0 .
$$

But, in view of (2.4) and (2.8), this inequality contradicts Lemma 2.2.

3. A projective generation of the Quintic elliptic scroll

Let B be an elliptic curve and denote by $\mathrm{X}(\mathrm{B})$ the quintic elliptic scroll over B contained in \mathbf{P}^{4}. Several ways to give an explicit construction of $\mathrm{X}(\mathrm{B})$ are known. For instance, $\mathrm{X}(\mathrm{B})$ can be generated by intersecting five suitable linear complexes of \mathbf{P}^{4} (cf. [5], p. 278) or by means of two elliptic cubic curves isomorphic to B meeting in a single point (cf. [3], p. 232). In this sec. we supply a different construction of $X(B)$ which seems to be new. The key of this construction is the existence of elliptic two-secant curves on the \mathbf{P}^{1}-bundle of invariant $\varepsilon=-1$ over an elliptic curve ${ }^{(2)}$.

Suppose C is a smooth elliptic curve of degree $d=5$ in \mathbf{P}^{4} not contained in any hyperplane. Consider a nontrivial fixed-point free involution σ of C (i.e. a translation of half a period if we think of C as a complex torus), the elliptic curve $\mathrm{B}=\mathrm{C} /(\sigma)$, the projection $\pi: \mathrm{C} \rightarrow \mathrm{B}$ and the line

$$
\begin{equation*}
\mathrm{F}_{b}=\langle p, \sigma(p)\rangle \quad(p \in \mathrm{C} \text { and } b=\pi(p)=\pi(\sigma(p))) . \tag{3.I}
\end{equation*}
$$

Lemma 3.1. If $b, b^{\prime} \in \mathrm{B}, b \neq b^{\prime}$, the lines F_{b} and $\mathrm{F}_{b^{\prime}}$ are skew.
Proof. Suppose $\mathrm{F}_{b} \cap \mathrm{~F}_{b^{\prime}} \neq \varnothing$. Then $\left\langle\mathrm{F}_{b}, \mathrm{~F}_{b^{\prime}}\right\rangle$ is a plane. Consider the pencil $\left\{\Pi_{t}\right\}_{t \in \mathbf{P}^{1}}$ of hyperplanes through $\left\langle\mathrm{F}_{b}, \mathrm{~F}_{b^{\prime}}\right\rangle$. As $\operatorname{deg} \mathrm{C}=5$, a nonconstant morphism $\mathbf{P}^{1} \rightarrow \mathrm{C}$ is defined which associates to Π_{t} the point which it cuts on C outside the four base points. This is absurd since $g(\mathrm{C})=\mathrm{I}$.

Thus we deduce
Proposition 3.I. The surface S generated by the lines $\mathrm{F}_{b}(b \in \mathrm{~B})$ is the quintic elliptic scroll $\mathrm{X}(\mathrm{B})$.
(2) Really this bundle admits three two-secant curves (cf. [6], p. 3io).

Proof. In fact S is a scroll over B by Lemma 3.I, and formula (2.1) gives $d=5^{(3)}$.

Now to construct $\mathrm{X}(\mathrm{B})$ for a given B consider: a double unramified covering $\bar{\pi}: \overline{\mathrm{C}} \rightarrow \mathrm{B}$, a quintic elliptic smooth curve $\mathrm{C} \subset \mathbf{P}^{4}$ isomorphic to $\overline{\mathrm{C}}$, the involution σ corresponding to $\bar{\pi}$ and define the line F_{b} as in (3.1). Proposition 3.1 tells us that $\mathrm{X}(\mathrm{B})$ is the surface generated by the lines $\mathrm{F}_{b}(b \in \mathrm{~B})$.

References

[1] P. Griffiths and J. Harris (1978) - Principles of Algebraic Geometry. John Wiley and Sons, Inc. New York.
[2] G. Horroks and D. Mumford (1973) - A rank 2 vector bundle on \mathbf{P}^{4} with 15,000 simmetries, «Topology», 12, 63-81.
[3] A. Lanteri and M. Palleschi (i978) - Osservazioni sulla rigata geometrica ellittica di \mathbf{P}^{4} «Istituto Lombardo (Rend. Sc.) ", A II2, 223-233.
[4] A. Lanteri and M. Palleschi (1979) - Sulle superfici di grado piccolo in \mathbf{P}^{4}. «Istituto Lombardo (Rend. Sc.) ", A 113, 224-241.
[5] J. G. Semple and L. Roth (1949) - Introduction to Algebraic Geometry. Clarendon Press, Oxford.
[6] T. Suwa (1969) - On ruled surfaces of genus 1, "J. Math. Soc. Japan», 21, 291-311.
(3) It can also be directly seen that S has degree $d=5$. In fact d is the number of lines F_{b} which intersect a general plane L in \mathbf{P}^{4}. The map σ allows us to define a correspondence ψ of bidegree $[5,5]$ in the pencil of hyperplanes through L. As σ is an involution the ten united points of ψ correspond to five hyperplanes through L containing a pair ($p, \sigma(p)$); obviously each pair defines a line F_{b} intersecting L.

[^0]: (*) Lavoro eseguito nell'ambito dell'attività del G.N.S.A.G.A. del C.N.R.
 (**) Istituto matematico «F. Enriques» - Via C. Saldini, $50-20133$ Milano.
 (***) Nella seduta dell'8 novembre 1980.

 17 - RENDICONTI 1980, vol. LXIX, fasc. 5.

