ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

ANTONIO LANTERI

On the existence of scrolls in P^4

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **69** (1980), n.5, p. 223–227.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1980_8_69_5_223_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1980.

RENDICONTI

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta dell'8 novembre 1980 Presiede il Socio Anziano Vincenzo Caglioti

SEZIONE I

(Matematica, meccanica, astronomia, geodesia e geofisica)

Geometria. — On the existence of scrolls in \mathbf{P}^{4} (*). Nota di Antonio Lanteri (**), presentata (***) dal Socio G. Zappa.

RIASSUNTO. — Si dimostra il seguente risultato. Sia X una superficie proiettivamente rigata, non iperpiana, di \mathbf{P}^4 ; allora X è la rigata cubica oppure è una rigata quintica ellittica. Si descrive inoltre una nuova generazione proiettiva delle rigate quintiche ellittiche di \mathbf{P}^4 .

I. INTRODUCTION

In this paper we prove the following: let $X \subset \mathbf{P}^4$ be a scrollar surface not lying in any hyperplane (we consider only smooth surfaces); then X is either the cubic rational scroll or the quintic scroll over an elliptic curve. This confirms a conjecture expressed in a previous paper on surfaces in \mathbf{P}^4 ([4]), where the same fact was proved only for scrollar surfaces of degree d < 11. In particular it turns out that in \mathbf{P}^4 there are no scrollar surfaces with irregularity q > 1 and this agrees with a circulating conjecture on the existence of a bound for the irregularity of the surfaces in \mathbf{P}^4 . In fact, but the elliptic scrolls, a unique class of irregular surfaces in \mathbf{P}^4 is still known: the abelian surfaces of degree d = 10 studied by Horroks and Mumford ([2]).

- (*) Lavoro eseguito nell'ambito dell'attività del G.N.S.A.G.A. del C.N.R.
- (**) Istituto matematico «F. Enriques » Via C. Saldini, 50 20133 Milano.
- (***) Nella seduta dell'8 novembre 1980.

17 - RENDICONTI 1980, vol. LXIX, fasc. 5.

Here is a sketch of our proof. Consider a scroll $X \subset \mathbf{P}^4$ of degree d and the associate curve C_X in the Grassmannian of the lines of \mathbf{P}^4 . By means of a basic formula proved in [4] we can express the genus of C_X as a polynomial in d. Then by applying to C_X the Castelnuovo inequality for the genus of a curve in \mathbf{P}^n we prove that $d \leq 5$. This is enough to conclude.

In the last section we supply a new projective construction of the quintic scroll in \mathbf{P}^4 over a given elliptic curve.

2. \mathbf{P}^4 CONTAINS NO SCROLL OF DEGREE d > 5

Let $X \subset \mathbf{P}^n$ be a complex irreducible smooth algebraic surface; if there exists a morphism $p: X \to B$ over an (irreducible and smooth) curve B, each fibre of which is a line, X is said to be a *scroll* over B. Denote by q(X) and g(B) the irregularity of X and the genus of B respectively. If X is a scroll over B, then q(X) = g(B).

Throughout this paper we consider scrolls embedded in the four dimensional projective space \mathbf{P}^4 . First of all we have the following basic formula.

LEMMA 2.1. Let $X \subset \mathbf{P}^4$ be a scroll of degree d and irregularity q. Then

(2.1)
$$q = \frac{1}{6} (d-2) (d-3).$$

For a proof see [4], Proposition 3.1.

Consider now the Grassmann manifold G = Grass(2, 5) of the lines of \mathbf{P}^4 . As it is well known, G is a six dimensional algebraic manifold of degree five embedded in \mathbf{P}^9 . Denote by C_X the curve in G corresponding to a scroll $X \subset \mathbf{P}^4$, and by $\langle C_X \rangle$ its linear span.

Remark 2.1. Let $X \subset \mathbf{P}^4$ be a scroll of degree d and irregularity q. Then

i) C_X is a smooth curve of degree d and genus q;

ii) if d > 5, dim $\langle C_X \rangle \ge 5$.

For *i*) see [5], p. 281. To see *ii*) suppose dim $\langle C_X \rangle \leq 4$. Then C_X is a component of the curve section of G with a four dimensional linear space L of **P**⁹. As G has degree five, this implies $d \leq 5$.

Consider now integers r, h, k, such that

$$(2.2) 0 \le k \le r - 1,$$

and the polynomial

(2.3)
$$F(r, h, k) = r(r-3)h^2 + 2k(r-3)h + (k-1)(k-2).$$

LEMMA 2.2. Suppose

(2.4)

 $4 \leq r \leq 8$,

and $h \ge 2$; then

$$(2.5) F(r, h, k) > 0.$$

Proof. Consider $F_{r,k}(h) = F(r, h, k) \in \mathbb{Z}[r, k][h]$, and denote by $h_1 = h_1(r, k)$, $h_2 = h_2(r, k)$ $(h_1 \le h_2)$ the roots of the equation $F_{r,k}(h) = 0$. Suppose $F(r, h, k) \le 0$; it is sufficient to see that if (2.4) holds, then

$$(2.6)$$
 $h_2 < 2$.

Let $\Delta = \Delta(r, k)$ be the discriminant of $F_{r,k}(h)$ and $k_m = \frac{1}{2}r$. Then $\Delta(r, k_m) \ge \Delta(r, k)$ if r and k satisfy (2.4) and (2.2) respectively. Now, recalling (2.3), we have

$$h_2 \leq \frac{1}{r} \left(\sqrt{\Delta/4} - k \right) \leq \frac{1}{r} \sqrt{\Delta/4} \leq \frac{1}{r} \sqrt{\Delta(r, k_m)/4} \ .$$

Thus a straightforward calculation of $\Delta(r, k_m)$ with r as in (2.4) gives (2.6).

It is well known that \mathbf{P}^4 contains a cubic rational scroll (i.e. the Steiner surface of \mathbf{P}^4) and the quintic elliptic scrolls with invariant e = -1 corresponding to the general curve sections of the Grassmannian G. It is also known that \mathbf{P}^4 contains no other scroll of degree $3 \le d \le 5$. Now we can state the following

THEOREM 2.1. Let $X \subset \mathbf{P}^4$ be a scroll (not lying in any hyperplane ⁽¹⁾); then either

- i) X is the cubic scroll, or
- ii) X is a quintic elliptic scroll.

Proof. If X has degree $d \leq 5$, the theorem is trivial. Suppose X is a scroll of degree d > 5 and consider the curve C_X . By Remark 2.1 we can suppose dim $\langle C_X \rangle = r + 1$ where r satisfies (2.4). Therefore, since C_X is a curve in \mathbf{P}^{r+1} not lying in any hyperplane, its genus $g(C_X)$ must satisfy the following inequalities (cf. [1], p. 253):

(2.7)
$$g(C_{X}) \leq \begin{cases} d-r-1 & \text{if } r+1 < d \leq 2r+1, \\ r+2 & \text{if } d = 2r+2, \\ \binom{m}{2}r+m\varepsilon & \text{if } d > 2r+2, \end{cases}$$

(1) The unique scroll in P^3 is the quadric surface.

where m = [(d-1)/r], $\varepsilon = d - 1 - mr$ and [] is the least integer function. On the other hand, $g(C_X) = q(X)$ and by Lemma 2.1, q is given by (2.1). Now, if $r + 1 < d \le 2r + 2$ it is easy to see that the first two inequalities in (2.7) cannot be satisfied. Otherwise, if d > 2r + 2 we can write d - 1 = hr + k where

(2.8)
$$h \ge 2$$
 and $\begin{pmatrix} 0\\ 2 \end{pmatrix} \le k \le r-1$ if $h > 2$ if $h = 2$;

thus m = h and $\varepsilon = k$ in (2.7) and the third inequality in (2.7) is equivalent to

$$\mathbf{F}(r, h, k) \leq \mathbf{0}$$
.

But, in view of (2.4) and (2.8), this inequality contradicts Lemma 2.2.

3. A PROJECTIVE GENERATION OF THE QUINTIC ELLIPTIC SCROLL

Let B be an elliptic curve and denote by X(B) the quintic elliptic scroll over B contained in \mathbf{P}^4 . Several ways to give an explicit construction of X(B) are known. For instance, X(B) can be generated by intersecting five suitable linear complexes of \mathbf{P}^4 (cf. [5], p. 278) or by means of two elliptic cubic curves isomorphic to B meeting in a single point (cf. [3], p. 232). In this sec. we supply a different construction of X(B) which seems to be new. The key of this construction is the existence of elliptic two-secant curves on the \mathbf{P}^1 -bundle of invariant $e = -\mathbf{I}$ over an elliptic curve⁽²⁾.

Suppose C is a smooth elliptic curve of degree d = 5 in \mathbf{P}^4 not contained in any hyperplane. Consider a nontrivial fixed-point free involution σ of C (i.e. a translation of half a period if we think of C as a complex torus), the elliptic curve $\mathbf{B} = C/(\sigma)$, the projection $\pi: C \to \mathbf{B}$ and the line

(3.1)
$$F_b = \langle p, \sigma(p) \rangle$$
 $(p \in \mathbb{C} \text{ and } b = \pi(p) = \pi(\sigma(p))).$

LEMMA 3.1. If $b, b' \in B$, $b \neq b'$, the lines F_b and $F_{b'}$ are skew.

Proof. Suppose $F_b \cap F_{b'} \neq \emptyset$. Then $\langle F_b, F_{b'} \rangle$ is a plane. Consider the pencil $\{\Pi_t\}_{t \in \mathbf{P}^1}$ of hyperplanes through $\langle F_b, F_{b'} \rangle$. As deg C = 5, a nonconstant morphism $\mathbf{P}^1 \to C$ is defined which associates to Π_t the point which it cuts on C outside the four base points. This is absurd since g(C) = I.

Thus we deduce

PROPOSITION 3.1. The surface S generated by the lines F_b ($b \in B$) is the quintic elliptic scroll X(B).

(2) Really this bundle admits three two-secant curves (cf. [6], p. 310).

Proof. In fact S is a scroll over B by Lemma 3.1, and formula (2.1) gives d = 5⁽³⁾.

Now to construct X(B) for a given B consider: a double unramified covering $\overline{\pi}: \overline{C} \to B$, a quintic elliptic smooth curve $C \subset \mathbf{P}^4$ isomorphic to \overline{C} , the involution σ corresponding to $\overline{\pi}$ and define the line F_b as in (3.1). Proposition 3.1 tells us that X(B) is the surface generated by the lines $F_b(b \in B)$.

References

- [1] P. GRIFFITHS and J. HARRIS (1978) *Principles of Algebraic Geometry*. John Wiley and Sons, Inc. New York.
- [2] G. HORROKS and D. MUMFORD (1973) A rank 2 vector bundle on P⁴ with 15,000 simmetries, «Topology», 12, 63-81.
- [3] A. LANTERI and M. PALLESCHI (1978) Osservazioni sulla rigata geometrica ellittica di P⁴ «Istituto Lombardo (Rend. Sc.)», A 112, 223–233.
- [4] A. LANTERI and M. PALLESCHI (1979) Sulle superfici di grado piccolo in P⁴. « Istituto Lombardo (Rend. Sc.)», A 113, 224-241.
- [5] J. G. SEMPLE and L. ROTH (1949) Introduction to Algebraic Geometry. Clarendon Press, Oxford.
- [6] T. SUWA (1969) On ruled surfaces of genus 1, «J. Math. Soc. Japan», 21, 291-311.

(3) It can also be directly seen that S has degree d = 5. In fact d is the number of lines F_b which intersect a general plane L in \mathbf{P}^4 . The map σ allows us to define a correspondence ψ of bidegree [5, 5] in the pencil of hyperplanes through L. As σ is an involution the ten united points of ψ correspond to five hyperplanes through L containing a pair $(\not p, \sigma(\not p))$; obviously each pair defines a line F_b intersecting L.