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RENDICONTI
DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta dell’8 novembre ig8o  

Presiede i l  Socio Anziano V in c e n z o  C a g l io t i

SEZIONE I
(Matematica, meccanica, astronomia, geodesia e geofìsica)

G eom etria. —  On the existence of scrolls in  P 4 (*\ Nota di 
A ntonio L anteri presentata <***) dal Socio G. Z appa.

RIASSUNTO. — Si dimostra il seguente risultato. Sia X una superficie proiettivamente 
rigata, non iperpiana, di P4; allora X è la rigata cubica oppure è una rigata quintica ellittica. 
Si descrive inoltre una nuova generazione proiettiva delle rigate quintiche ellittiche di P4.

i. Introduction

In this j^aper we prove the following: let X c  P4 be a scrollar surface 
not lying in any hyperplane (we consider only smooth surfaces); then X 
is either the cubic rational scroll or the quintic scroll over an elliptic 
curve. This confirms a conjecture expressed in a previous paper on surfaces 
in P 4 ([4]), where the same fact was proved only for scrollar surfaces of 
degree d  <  11. In particular it turns out that in P4 there are no scrollar 
surfaces with irregularity <7 >  1 and this agrees with a circulating conjecture 
on the existence of a bound for the irregularity of the surfaces in P4. 
In fact, but the elliptic scrolls, a unique class of irregular surfaces in P 4 
is still known: the abelian surfaces of degree d  =  10 studied by Horroks 
and Mumford ([2]).

(*) Lavoro eseguito nell’ambito dell’attività del G.N.S.A.G.A. del C.N.R.
(**) Istituto matematico « F. Enriques» -  Via C. Saldini, 50 -  20133 Milano. 

(***) Nella seduta dell’8 novembre 1980.
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Here is a sketch of our proof. Consider a scroll X c: P 4 of degree d  and 
the associate curve Cx in the Grassmannian of the lines of P 4. By means 
of a basic formula proved in [4] we can express the genus of Cx as a 
polynomial in d . Then by applying to Cx the Castelnuovo inequality for 
the genus of a curve in Yn we prove that d  5. This is enough to conclude.

In the last section we supply a new projective construction of the 
quintic scroll in P 4 over a given elliptic curve.

2. P 4 CONTAINS NO SCROLL OF DEGREE d  >  5

Let X c  Pw be a complex irreducible smooth algebraic surface; if there 
exists a morphism p  : X —>■ B over an (irreducible and smooth) curve B, 
each fibre of which is a line, X is said to be a scroll over B. Denote by 
q (X) and g  (B) the irregularity of X and the genus of B respectively. 
If X is a scroll over B, then q (X) =  g  (B).

Throughout this paper we consider scrolls embedded in the four di­
mensional projective space P4. First of all we have the following basic 
formula.

Lemma 2.1. Let X c  P4 be a scroll of degree d and irregularity q. 
Then

(2.IJ q =  p ( ~ ß —  2 )0 * — 3;-

For a proof see [4], Proposition 3.1.
Consider now the Grassmann manifold G =  Grass (2 , 5) of the lines 

of P4. As it is well known, G is a six dimensional algebraic manifold of 
degree five'embedded in P 9. Denote by Cx the curve in G corresponding 
to ai scroll X c: P 4, and by (Cx) its linear span.

Remark 2.1. Let X c P 4 be a scroll of degree d  and irregularity q. 
Then

i) Cx is a smooth curve of degree d  and genus q;

ii) if d  >  5 , dim (Cx) >  5.

For i) see [5], p. 281. To see ii) suppose dim (Cx) < 4 .  Then Cx is 
a component of the curve section of G with a four dimensional linear 
space L of P 9. As G has degree five, this implies d  <| 5.

Consider now integers r  , h , k, such that

(2.2) o <  k  <  r  — I ,

and the polynomial

(2.3) F (r , h , k) =  r (r —  3) h2 +  2 k (r —  3) h +  (k —  1) {k —  2) .
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L em m a  2 .2. Suppose

(24) 4 <  r  <  8

and h >  2; then

(2-5) F (r , h , £) >  o .

Proof. Consider Fffk (h) — F (r , h , k) £ Z [r , k\ \h], and denote by 
hi =  h i(r  , k) , h2 =  h^ (r , k ) (Ax <  ^2) the roots of the equation FrfJc (h) =  o. 
Suppose F ( r , ^ -, k) <  o; it is sufficient to see that if (2.4) holds, then

Let A =  A ( r , I)  be the discriminant of Frik{h) and km =  \  r. Then
A (r , km) "> A (r , k) if r  and k  satisfy (2.4) and (2.2) respectively. Now,
recalling (2.3), we have

Thus a straightforward calculation of A ( r , >èw) with r  as in (2.4) gives (2.6).
It is well known that P 4 contains a cubic rational scroll (i.e. the Steiner 

surface of P 4) and the quintic elliptic scrolls with invariant e =  — 1 corre­
sponding to the general curve sections of the Grassmannian G. It is also 
known that P 4 contains no other scroll of degree 3 d  5. Now we can 
state the following

THEOREM 2.1. Let X  c  P 4 be a scroll (not lying in any hyp er plane (1)); 
then either

i f  X is the cubic scroll, or 

it) X is a quintic elliptic scroll.

Proof. If X has degree d  <  5, the theorem is trivial. Suppose X is 
a scroll of degree d  >  5 and consider the curve Cx. By Remark 2.1 we 
can suppose dim (Cx) — r  + '1  where r  satisfies (2.4). Therefore, since Cx 
is a curve in Pr+1 not lying in any hyperplane, its genus g(C x) must 
satisfy the following inequalities (cf. [1], p. 253):

(2.6) -62 <  2 .

k2 < f ( Ì A l 4 - k ) < - Ì A l 4 < f i A ( r , k m) l4.

d  — r  — if f  +  I <  d  <  2 r  +  I ,

(2-7) e  rCxi <
r  +  2 if d  — 2 r  +  2 ,

if

(1) The unique scroll in P3 is the quadric surface.
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where m ■= [(d— i)/r] , s =  d — 1 — m r  and [ ] is the least integer function. 
On the other hand, g  (Cx) =  q (X) and by Lemma 2.1, q is given by (2.1). 
Now, if r  +  I <  d  <  2 r  +  2 it is easy to see that the first two inequalities 
in (2.7) cannot be satisfied. Otherwise, if d > 2 r Jr 2 we can write 
d  — I — hr  +  k  where

o ) if h >  2
(2.8) h > 2  and > <. k  <  r  — 1

2 ) if h — 2 ;

thus m — h and s =  k in (2.7), and the third inequality in (2.7) is equiva­
lent to

F (r , h , k) <  o .

But, in view of (2.4) and (2.8), this inequality contradicts Lemma 2.2.

3. A PROJECTIVE GENERATION OF THE QUINTIC ELLIPTIC SCROLL

Let B be an elliptic curve and denote by X(B) the quintic elliptic scroll 
over B contained in P 4. Several ways to give an explicit construction of 
X(B) are known. For instance, X(B) can be generated by intersecting five 
suitable linear complexes of P 4 (cf. [5], p. 278) or by means of two elliptic 
cubic curves isomorphic to B meeting in a single point (cf. [3], p. 232). 
In this sec. we supply a différent construction of X(B) which seems to be 
new. The key of this construction is the existence of elliptic two-secant 
curves on the P^bundle of invariant e =  — 1 over an elliptic curve(2).

Suppose C is a smooth elliptic curve of degree d  == 5 in P 4 not contained 
in any hyperplane. Consider a nontrivial fixed-point free involution a 
of C (i.e. a translation of half a period if we think of C as a complex torus), 
the elliptic curve B =  C/(cr), the projection "tz : C -> B and the line

(3-0 - F& =  (P . ® O )) O  e c  and b =  % (p) =  n (g ( fj))  .

Lemma 3.1. I f  b , h' e B , b 7^ b'\ the lines F& and  Fö/ are skew.

Proof. Suppose F6O F y  ^  0 . Then (Fb , F &>) is a plane. Consider 
the pencil {IIt}tepi of hyperplanes through (Fô , Fbf  As deg C — 5, a 
nonconstant morphism P 1 —* C is defined which associates to 11̂  the point 
which it cuts on C outside the four base points. This is absurd since
*(C) =  I. ' ,!

Thus we deduce

PROPOSITION 3.1. The surface S generated by the lines F& (b e B) is 
the quintic elliptic scroll X(B).

(2) Really this bundle admits three two-secant curves (cf. [6], p. 310).
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Proof. In fact S is a scroll over B by Lemma 3.1, and formula (2.1) 
gives d  — S (3).

Now to construct X(B) for a given B consider: a double unramified 
covering rz : C -> B, a quintic elliptic smooth curve C c P 4 isomorphic to C, 
the involution cr corresponding to tz and define the line Fb as in (3.1). Pro­
position 3.1 tells us that X(B) is the surface generated by the lines Fb(òe  B).
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(3) It can also be directly seen that S has degree d =  5. In fact d is the number of lines 
Fb which intersect a general plane L in P4. The map a allows us to define a correspondence  ̂
of bidegree [5 , 5] in the pencil of hyperplanes through L. As c is an involution the ten united 
points of 4* correspond to. five hyperplanes through L containing a pair ( p  , a  {p))\. obviously 
each pair defines a line Fb intersecting L.


