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Fisica matematica. — A nofe on a variational formulation of the
Einstein equations for thermo-elastic materials. Nota di Franco
CarpIN @, presentata @ dal Socio G. GRIOLL

RIASSUNTO. — Sulla base di una nota versione relativistica della disuguaglianza di
Clausius-Duhem si deduce in Relativith Generale che, anche se per un corpo termo-elastico €
la legge di Fourier non & lineare, il tensore di Fourier ¢ definito positivo. Lo scopo prin-
cipale del lavoro consiste nello stabilire ’equivalenza delle equazioni gravitazionali di Einstein
per & (il cui tensore energia-impulso include il tensore termodinamico di Eckart) con una
condizione variazionale, scritta in due versioni equivalenti.

I. INTRODUCTION

In late years a relativistic variational principle due to Schopf (see [6]),
which consists of the equivalence of a certain variational condition with
the Einstein gravitational equations for elastic materials, has been extended
by Bressan to polar materials in [2] and afterwards by Pitteri to materials of
any order # > 2 in [4] and [3].

In spite of the constitutive complexity of those materials the above prin-
ciples deal with bodies necessarily undergoing adiabatic processes, i.e. with
Dv/Ds = o = ¢% where 7 is the specific entropy and ¢% is the heat flux.

In this note a variational formulation of the Einstein—Eckart equations
(so that the energy-momentum tensor #%,s includes Eckart’s thermodynamic
tensor 2 # ¢g) is stated for thermo-elastic materials in two versions.

More in detail, a brief introduction to the Lagrangian formalism in
general relativity (based on [3]) and to the corresponding basic laws is presented
in NN 2-3, and there the class TE of thermo-elastic materials is introduced
in a slightly modified way with respect to [3], on the basis of a relativistic
version of the Clausius-Duhem inequality. Thus a result concerning the linear
case and well known in classical physics can be extended, in relativity theory,
to the non-linear case. In N© 4 a scalar constraint between v and 3g.g (where
gop is the metric tensor) is reached by means of simple considerations on the
purely adiabatic variational case, and it is called weakly-isentropic (variational)

(*) Address: Seminario Matematico, Universitd di Padova, via Belzoni 7, 35100 Padova.
This paper has been worked out within the sphere of activity of the research group n. 3
for Mathematical Physics of C.N.R. (Consiglio Nazionale delle Ricerche) in the academic

year 1979/80.
(**) Nella seduta del 26 giugno 1980.
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constraint (cf. (4.6)). It gives rise to the (weakly-isentropic) version of the
afore-mentioned variational principle. The other version includes no con-
straints on 87 and 3gs. -

2. LAGRANGIAN FORMALISM FOR MATERIAL PROCESSES IN GENERAL RELATIVITY

We assume the universe to consist of a continuous body € moving in
a space-time &, of general relativity. We regard € as a set of material
particles. Let #* be any process physically possible for €, which describes
the world tube #% (#*) in the determination %5 of &,. Let y%® (2= 49
be the co-ordinates of a typical event point & of 5 in an admissible
reference frame () (cf. [3], § 15). In this frame we denote the metric tensor
for 2* by gia = Zta (¥7) and represent the world-line #p« (#¥) of P*e @
by 4% = 9 (P*, s*). Thus the space-time metric is (ds¥)? = — gra dyT dy?
and the g4-velocity of P* at 7 = §°(P*, §) is «*® = (a57/as™) (P, 7).
Let éﬁ = gFA—{— w5 un be the spatial projector. Following [3] the L-#%
material (or Lagrangian) co-ordinate of P*€ @ is the co-ordinate y" of the
intersection of the world-line #%« (#*) of P* with the hyperplane #=o,
say o3. Let & = #¢(#¥) N oy. For a sufficiently regular motion for €
there is an one-to-one mapping from € to %, y" = ¥“(P*). We now call
the physical state X° (cf. [3], p. 139) and the configuration of € in %5
within the process P* reference physical state and reference configuration
respectively. We denote the spatial metric on K by

(2.1) (ds*? = afm dpt dy™,  where
L
atn = dim (% 2% ¥%) = gim (0, 3%, 5% 7%,

and call (}dé*)z, which depends only on &* and ¥, material metric.

‘ *
* %

Let now 2° be the co-ordinates of a typical event point & of &, in an
admissible reference frame (x), and let & belong to the world-tube #¢ (&)
of a physically possible process & for €. This is characterized by (7) %’s
motion M :

(2.2) 2=, 9",

(#) the metric tensor F.4(2%), and (444) some fields 7y (x%),- - -, #x (") such
that, for zé R and yLe s, the values g [%* (t,yL)] ,t=1,-++,N, equal
the physical values of some magnitudes 4, ,--., #yx, relevant for the

physical state dZ at the event point #*(z,s") of the matter element d% that
contains P*,

(1) Greek [Latin] letters run from o [1] to 3.
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In connection with the process 2 we recall that ds* = — gop d2” ds® has
the signature + 2, %% = D&*[Ds @ (4" 2, = — 1) [A" = Du’[Ds (us A" = 0)]
is the 4-velocity [4-acceleration], g.p = gug + #a #p is the spatial projector,
and 2°L = oF°[oy" is the position gradient. The (first-right) Cauchy-Green
tensor Cim and the s#ain tensor ey are defined by

* 1
(23) aLm + 2em = CLM == 0L Ol.pM , where Och = gpo xcL s
and
. DCrm e o Derm
2. = 2 % oL M = 2
(2-4) Ds (/o) 0L 0M Ds

hold (cf. [3], (57.6)s).

Now we consider the matter element d¥ containing the material point
Y (= yr (P™), its proper volume dC* (> 0) in the reference configuration Fas
and its actual counterpart dC (at x € #5«(2)). Then (cf. [3], § 56)

dC

(2.9) D= —r where 2 — V:;ér_ D¢
&

Ds

Q(xo,...yxs)

dcx ’ a(z, yh ¥4 %)

(¢ =det| gl , a* = det | atull)-

Let Adm* = 2 k*dC*® be the proper gravitational mass of d% (in
energy -units) in S, so that A* is the proper density in the reference confi-
guration; let & (x) be the (actual) proper density of conventional mass (in Z):

(2.6) £dC = £* dC*;

hence the Lagrangian and Eulerian eguations of continuity

(2.7) | F=9k (k1) =0

hold for it; finally, let ¢#dm = p dC be the (actual) proper gravitational mass
of d¥ at x € #5. (&), where p (x) is the proper density of gravitational mass.
After [3] (cf. §21), we define '

(2.8) kw dC = A dm — A dm* = (p — k) dC,

where w is briefly called the specific internal energy (of € at P¥).

(2) By T. , [T..},] we mean the partial [covariant] derivative of T ', and we use
the following notations:

2Tle#] —~ Tab —T6x , 2T0H =Tab 4 T8« , DT /Ds=T. "

(3) ¢ is the velocity of light in vacuo.
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3. BASIC LAWS. THERMO-ELASTIC MATERIALS

We consider a body % uncapable of electromagnetic phenomena, having
the energy-momentum tensor:

(3.1) Uop = ottty + Xop + Qap,  With Qup = 2 % g5,

where X, is the Cauchy stress tensor (X(up = 0 == X,p 2°) and ¢, is the (spatial)
heat flux vector. We postulate the Einstein-Eckart gravitational equations
in the form:

8k
(3'2) AaB +

-t

Up=0 (A= Res+ 3 Rt 00,

where R,gys is the Riemann’s tensor and % is the Cavendish’s constant. The
conservation equations %" = o0, which follow from (3.2) by A*¥g=o,
include the ewnergy comservation equation wu, %“B/a = 0, which reads

Dw o
By T X Pty = — ¢%e— 4" Aa.

(3:3) %

By regarding X* Uwe as the work power of internal forces, i.e. SYDs =
= X% %y, on the basis of the 1% principle of thermodynamics we interprete
the quantity — g%, —¢" A, as the heat absorbed by % (per unit of proper
volume and time), hence (cf. [3], §24)

D‘ZU Sl(i) o o
(3.4) é—5;+ﬁ=Qass=—g/a—g Ay

Let Y™ be the second Piola~Kirchhoff stress tensor; it is related to X* by

(3.5) X* = o oo Y.

Let T (> 0) [n] be the absolute temperature [specific entropy]. We assume
the absence of the electromagnetic field, and, as the 2™ principle of thermo-
dynamics, we introduce the following relativistic version of the Clausius-
Duhem inequality:

Under the definitions

7 _ 4
(3.6> ya=lé‘7)%a+sa , sa=T(=5pG),
the inequality
(3~7) ya/a Z o

must be satisfied by € along every physically possible process®.

(4) The relativization (3.7) of the Clausius-Duhem inequality is supported in [3],
App. C, by means of kinematical considerations, see also [1].



FRANCO CARDIN, A nofe on a variational formulation, ecc. 49

By (3.6)12, (3:3), (3-5), (2.4)2, (2.7)1, and (2.5)s, (3.7) can be written
in a Lagrangian form:

L] D, :
38 Bl o S +TA)=o0.

We say that the body is thermo-clastic (TE) at its materials point P*
(or ") if the following two conditions hold at P*®:

(A) The specific internal energy w, the specific entropy n, and Y™,
‘are twice continuously differentiable functions of ey and T, the heat flux ¢

s a twice continuously differentiable vector valued function of em, T, Ty,
and A, ®.

(B) Constraints are absent, in the (narrow) sense that admissible values
of e and T are p/zyszmlly compatible with arbitrary values of T, Depy/Ds,
and A,.

Let & = w — Tn be the specific free energy. Then by (A) F =
= Z (y" am, T) and (3.8) becomes

oF \ DT x 0F ) Dem | 24" FTA) <
69 # (37 +n) Bt (9 27 ) Do | 9 (7 1A <o

By condition (B) the values of DT/Ds, Tji, Depm/Ds, and A, are arbitrary,
so that (3.9) yields

~r

- AF
(3'IO> n = _'ﬁ—(yL} SLMyT> » YLM=

P 9/’

2L sLM)’T) ’

and (3.9) simplifies into.
(3.11) (T +TA,) <o.

By simple and well known considerations based on Helmholtz postulate
(cf. [3], §28) a*f/aT < 0 holds; hence (3.10); defines T as an implicit
function T of y*, 7, and epy. Set i (3", eLu, 7)) =@ [¥" em, TN am, M-
By a deductlon like the above one we derive

% Ot

o~ R

o .
(3.12) T=%(J'L,SLM,7)) , YM = —

(5) This definition is a slightly modified version of Bressan’s definition of elastic
materials in [3], § 63.

(6) A possible dependence of g% on the g-acceleration A, is suggested by the expres-
sion (3.4), for the absorbed heat Qass by P*.

4 — RENDICONTI 1980, vol. LXIX, fasc. 1-2.
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*
* *

Now suppose that the following expression (possibly non-linear in Tp)
holds for ¢™:

G13) ¢ =— PO e, T TN Ty +TAg), % up =0 = uo x*;

then, for fixed values of ¢, T, and T/é (see (B)), and for arbitrary values
of A,, hence of T,é—l—TAo,, the validity of inequality (3.11) implies that 58
is positive definite.

_ Note that in the classical case the analogous result is deduced only for
ox"?|3T ;= o.

*
* *

Let € TE and let (x) be an admissible reference frame. Then we call
thermodynamic process & for % any triple

G14) P = (g, M)

where g, #, and 7 are the fields F.4(x°), #*(2, y"), and 5 (z*) that solve the
Einstein-Eckart equations (3.1,2).

4. A VARIATIONAL PRINCIPLE

It is known (cf. [3], § 69) that the Einstein equations (3.1,2) for € (¢ TE)
uncapable of heat conduction (Q**=0) are equivalent to the variational condition:

(41) 5o F [Pl =0 for all 59 = (5g,0,0),

where

W TE1=[1g (R4 12 ) dr (R= R, dv—dst - ),
Q

32, €CEy and Sgup = 0 = Sguay on the frontier FQ of the domain
Q< #z (P). ,

The variations 8% considered above are isemtropic (3»n = 0); it is
justified by the fact that, for ¢* = o, the energy conservation equation (3.3)
becomes Dy/Ds = o by (3.12), (3.5), and (2.4); hence v = j (y™).

Now in connection with a general body ¥ € TE we consider the vector:

(4.3) S =9 =, =5 (see (3.6)),
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and its variation for some 8% = (3g,0, o)

(4.4) 85 S = s 0+ £ " S0+ Sp 5.

In particular we have:

4-5) e 89»\ P = g dp u” — E S 1 39 5

If % =0 holds for € then by (4.3); and (3.6), we have 855" =0 and, in
this case, by (4.5) we note that the relation

(4.6) Ug, 3z S =k Nty 3z u”

characterizes the isentropic variations 8% (for which 8% =o0). Since this
characterization holds only in the case ¢* = 0, (4.6) will be called the weakly
isentropic variational condition. We will use it in a basic way.

*
* *

Now we say that the process # = (g,.# ,n) for ¥ € TE satisfies the
weakly isentropic variational condition NCS [unrestricted variational condition
VCE™ in Q, if for any variation 3P = (3g,0,80) of P that fulfils the

conditions
(4.7) 3 €CO(Q) |, dgp=o0=3dgg, on FQ,

and (4.6) [and for arbitrary variation dv GC(") Q)] in Q, we have the first
[second] of the relations (see (4.2)):

(4.8) | SsF[#] =0,

i

16 -rc/z

(4.8’) 35 F (2] = f & ua(k 8o 0 —39 F* | —g dx.

THEOREM. A continuous body € € TE satisfies the variational condition
Ve [VCH™] in Q iff the Einstein-Eckart equations (3.1,2) hold for it in Q.

Proof. The following formulas for arbitrary 8g.s and 37, well known in
the adiabatic case (cf. [3], §68), are still holding because the varled quan-
tities do not depend on Lk

Sp 1 =3u" P U’ Bgps ,  Optta =1’ ey + ¥ tte 1l U’ gps,

R N e | = ol "N ¥ SO ¥ L3 VO

dp &M = ‘% °‘L oM 8g;u: .



52 Lincei - Rend. Sc. fis. mat. e nat. - Vol. LXIX - Ferie 1980

Since 5% u, = 0, whence 8 (s** Uy) = 0, We have 2,35 5™ = — 5" 34 u,,
and, by using (4.3); and (4.9),, relation (4.5) becomes

(4.10) B 80 = E g 83 1 — 1y 8p F** — D5 1P 3o -

For dg., fulfilling (4.7) we have, as is well known (cf. [3], (69.12)),

(4.11) : ngJ V —¢ Rdx:—fA“BSgaa]/—g dx .
8 o
Moreover
(4.12) Sp(l—g=w+dDW(—g H+|—g Mow.

and by (4.9);,, we have

(4.13) (w+ & Sp(f —g k) = — o u Sg,q

1 —¢

while, by (3.12), (4.9)5, (3.5), and (4.10),

I—¢ kSgaw:V—gé(;_w

“LM

i
32 e1m + —% 371)

LM

- v .

T o T a
=Yy—g ,é[——z-k—XBSgaa—l—F(——.@x( uB)Sgag+

A B g S 1 — uy 3p 50,
(4.14) V—g #8p w0 = — V—:i (X 4 2 T5“ ™) 8,0 -+
- T * o ¥t
+V—g g(k Nito 8 26" — 10y 8p S .
Remembering that s*=¢*T™" and Q% = 24“4® by (4.11-14) we have:

""-_r o 8 o o AN
(4.15) w[ﬂ/’]=—ﬁ~g [A“+——£’Z—ﬁ<pu W X4 Q)] dgp dr +
‘ Q

16 10/
!

fV——g %ua(é*nb‘gu“—Sg?ﬂ)dx.
Q

_,._
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By the arbitrariness of 3g,s and the continuity of {A“p + 8_;h_ (oo™ 1+ - .)],

the two versions of the theorem easily follow. q e d

The theorem above can be extended in a natural way to more general
classes of materials, such as the polar materials [2] and the materials of order
n=2 [5].
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