Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Franco Cardin

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 69 (1980), n.1-2, p. 45-53.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1980_8_69_1-2_45_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Fisica matematica. - A note on a variational formulation of the Einstein equations for thermo-elastic materials. Nota di Franco Cardin (*), presentata (*) dal Socio G. Grioli. $\stackrel{y}{4}$

Abstract

Riassunto. - Sulla base di una nota versione relativistica della disuguaglianza di Clausius-Duhem si deduce in Relatività Generale che, anche se per un corpo termo-elastico \mathscr{C} la legge di Fourier non è lineare, il tensore di Fourier è definito positivo. Lo scopo principale del lavoro consiste nello stabilire l'equivalenza delle equazioni gravitazionali di Einstein per \mathscr{C} (il cui tensore energia-impulso include il tensore termodinamico di Eckart) con una condizione variazionale, scritta in due versioni equivalenti.

I. Introduction

In late years a relativistic variational principle due to Schöpf (see [6]), which consists of the equivalence of a certain variational condition with the Einstein gravitational equations for elastic materials, has been extended by Bressan to polar materials in [2] and afterwards by Pitteri to materials of any order $n \geq 2$ in [4] and [5].

In spite of the constitutive complexity of those materials the above principles deal with bodies necessarily undergoing adiabatic processes, i.e. with $\mathrm{D} \eta / \mathrm{D} s \equiv \mathrm{o} \equiv q^{\alpha}$, where η is the specific entropy and q^{α} is the heat flux.

In this note a variational formulation of the Einstein-Eckart equations (so that the energy-momentum tensor $\mathscr{U}_{\alpha \beta}$ includes Eckart's thermodynamic tensor $\left.2 u_{(\alpha} q_{\beta)}\right)$ is stated for thermo-elastic materials in two versions.

More in detail, a brief introduction to the Lagrangian formalism in general relativity (based on [3]) and to the corresponding basic laws is presented in NN 2-3, and there the class TE of thermo-elastic materials is introduced in a slightly modified way with respect to [3], on the basis of a relativistic version of the Clausius-Duhem inequality. Thus a result concerning the linear case and well known in classical physics can be extended, in relativity theory, to the non-linear case. In $\mathrm{N}^{\circ} 4$ a scalar constraint between $\delta \eta$ and $\delta g_{\alpha \beta}$ (where $g_{\alpha \beta}$ is the metric tensor) is reached by means of simple considerations on the purely adiabatic variational case, and it is called weakly-isentropic (variational)
(*) Address: Seminario Matematico, Università di Padova, via Belzoni 7, 35100 Padova. This paper has been worked out within the sphere of activity of the research group n. 3 for Mathematical Physics of C.N.R. (Consiglio Nazionale delle Ricerche) in the academic year 1979/80.
(**) Nella seduta del 26 giugno 1980.
constraint (cf. (4.6)). It gives rise to the (weakly-isentropic) version of the afore-mentioned variational principle. The other version includes no constraints on $\delta \eta$ and $\delta g_{\alpha \beta}$.

2. LAGRANGIAN FORMALISM FOR MATERIAL PROCESSES IN GENERAL RELATIVITY

We assume the universe to consist of a continuous body \mathscr{C} moving in a space-time \mathscr{S}_{4} of general relativity. We regard \mathscr{C} as a set of material particles. Let $\mathscr{P} *$ be any process physically possible for \mathscr{C}, which describes the world tube $\mathscr{W}_{\mathscr{C}}\left(\mathscr{P}^{*}\right)$ in the determination \mathscr{S}_{4}^{*} of \mathscr{S}_{4}. Let $y^{\Sigma(1)}\left(t=y^{0}\right)$ be the co-ordinates of a typical event point \mathscr{E} of \mathscr{S}_{4}^{*} in an admissible reference frame (y) (cf. [3], § I5). In this frame we denote the metric tensor for \mathscr{P}^{*} by $g_{\Gamma \Delta}^{*}=\tilde{g}_{\Gamma \Delta}^{*}\left(y^{2}\right)$ and represent the world-line $\mathscr{W}_{\mathrm{P}^{*}}\left(\mathscr{P}^{*}\right)$ of $\mathrm{P} * \in \mathscr{C}$ by $y^{\Sigma}=\tilde{y}\left(\mathrm{P}^{*}, s^{*}\right)$. Thus the space-time metric is $\left(\mathrm{d} s^{*}\right)^{2}=-g_{\Gamma \Delta}^{*} \mathrm{~d} y^{\Gamma} \mathrm{d} y^{\Delta}$ and the 4 -velocity of P^{*} at $\bar{y}^{\Sigma}=\tilde{y}^{\Sigma}\left(\mathrm{P}^{*}, \bar{s}^{*}\right)$ is $u^{* \Sigma}=\left(a \tilde{y}^{\Sigma} \mid \partial s^{*}\right)\left(\mathrm{P}^{*}, \bar{s}^{*}\right)$. Let $\stackrel{\stackrel{*}{g}}{\Gamma \Delta}$. $g_{\Gamma \Delta}^{*}+u_{\Gamma}^{*} u_{\Delta}^{*}$ be the spatial projector. Following [3] the L-th material (or Lagrangian) co-ordinate of $\mathrm{P} * \in \mathscr{C}$ is the co-ordinate y^{L} of the intersection of the world-line $\mathscr{W}_{\mathrm{P}^{*}}\left(\mathscr{P}^{*}\right)$ of P^{*} with the hyperplane $t=\mathrm{o}$, say σ_{3}. Let $\mathscr{S}_{3}^{*}=\mathscr{W}_{\mathscr{C}}\left(\mathscr{P}^{*}\right) \cap \sigma_{3}$. For a sufficiently regular motion for \mathscr{C} there is an one-to-one mapping from \mathscr{C} to $\mathscr{P}_{3}^{*}, y^{\mathrm{L}}=\breve{\boldsymbol{y}}^{\mathrm{L}}\left(\mathrm{P}^{*}\right)$. We now call the physical state Σ^{*} (cf. [3], p. 139) and the configuration of \mathscr{C} in \mathscr{S}_{3}^{*} within the process \mathscr{P}^{*} reference physical state and reference configuration respectively. We denote the spatial metric on \mathscr{S}_{3}^{*} by

$$
\begin{align*}
\left(\mathrm{d}^{1 *}\right)^{2} & =a_{\mathrm{LM}}^{*} \mathrm{~d} y^{\mathrm{L}} \mathrm{~d} y^{\mathrm{M}}, \quad \text { where } \tag{2.1}\\
a_{\mathrm{LM}}^{*} & =\tilde{a}_{\mathrm{LM}}^{*}\left(y^{1}, y^{2}, y^{3}\right)=\stackrel{\stackrel{1}{g}_{\mathrm{LM}}^{*}}{*}\left(\mathrm{o}, y^{1}, y^{2}, y^{3}\right),
\end{align*}
$$

and call $\left(\mathrm{d}^{1 *}\right)^{2}$, which depends only on \mathscr{P}^{*} and \mathscr{S}_{3}^{*}, material metric.

$$
^{} *
$$

Let now x^{p} be the co-ordinates of a typical event point \mathscr{E} of \mathscr{S}_{4} in an admissible reference frame (x), and let \mathscr{E} belong to the world-tube $\mathscr{W}_{\mathscr{C}}(\mathscr{P})$ of a physically possible process \mathscr{P} for \mathscr{C}. This is characterized by (i) \mathscr{C} 's motion \mathscr{M} :

$$
\begin{equation*}
x^{\alpha}=\tilde{x}^{\alpha}\left(t, y^{\mathrm{L}}\right), \tag{2.2}
\end{equation*}
$$

(ii) the metric tensor $\tilde{g}_{\alpha \beta}\left(x^{0}\right)$, and (iii) some fields $\tilde{m}_{1}\left(x^{\alpha}\right), \cdots, \tilde{m}_{\mathrm{N}}\left(x^{\alpha}\right)$ such that, for $t \in \mathbf{R}$ and $y^{\mathrm{L}} \in \mathscr{S}_{3}^{*}$, the values $\tilde{m}_{i}\left[\tilde{x}^{\alpha}\left(t, y^{\mathrm{L}}\right)\right], i=\mathrm{I}, \cdots, \mathrm{N}$, equal the physical values of some magnitudes $\mathscr{M}_{1}, \cdots, \mathscr{M}_{\mathrm{N}}$, relevant for the physical state $\mathrm{d} \Sigma$ at the event point $\tilde{x}^{\alpha}\left(t, y^{\mathrm{L}}\right)$ of the matter element $\mathrm{d} \mathscr{C}$ that contains P^{*}.
(I) Greek [Latin] letters run from o [1] to 3 .

In connection with the process \mathscr{P} we recall that $\mathrm{d} s^{2}=-g_{\alpha \beta} \mathrm{d} x^{\alpha} \mathrm{d} s^{\beta}$ has the signature $+2, u^{\alpha}=\mathrm{D} \tilde{x}^{\alpha} / \mathrm{D}{ }^{(2)}\left(u^{\alpha} u_{\alpha}=-\mathrm{I}\right)\left[\mathrm{A}^{\alpha}=\mathrm{D} u^{\alpha} / \mathrm{D} s\left(u_{\alpha} \mathrm{A}^{\alpha}=0\right)\right]$ is the 4 -velocity [4 -acceleration], $g_{\alpha \beta}=g_{\alpha \beta}+u_{\alpha} u_{\beta}$ is the spatial projector, and $x_{\mathrm{L}}^{\rho}=\partial \tilde{x}^{\rho} / \partial y^{\mathrm{L}}$ is the position gradient. The (first-right) Cauchy-Green tensor C_{LM} and the strain tensor $\varepsilon_{\mathrm{LM}}$ are defined by

$$
\begin{equation*}
a_{\mathrm{LM}}^{*}+2 \varepsilon_{\mathrm{LM}}=\mathrm{C}_{\mathrm{LM}}=\alpha_{\rho \mathrm{L}} \alpha_{\mathrm{M}}^{\rho}, \quad \text { where } \quad \alpha_{\mathrm{L}}^{\mathrm{\rho}}=\frac{1^{\rho}{ }_{\sigma}}{} x_{\mathrm{L}}^{\mathrm{\sigma}}, \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{D C_{\mathrm{LM}}}{\mathrm{D} s}=2 u_{(\rho / \sigma)} \alpha_{\mathrm{L}}^{\mathrm{L}} \alpha_{\mathrm{M}}^{\mathrm{a}}=2 \frac{\mathrm{D} \varepsilon_{\mathrm{LM}}}{\mathrm{D} s} \tag{2.4}
\end{equation*}
$$

hold (cf. [3], (57.6) 3).
Now we consider the matter element $\mathrm{d} \mathscr{C}$ containing the material point $y^{L}\left(=\breve{y}^{\mathrm{L}}\left(\mathrm{P}^{*}\right)\right)$, its proper volume $\mathrm{dC}{ }^{*}(>0)$ in the reference configuration \mathscr{S}_{3}^{*}, and its actual counterpart dC (at $\boldsymbol{x} \in \mathscr{W}_{\mathrm{P}^{*}}(\mathscr{P})$). Then (cf. [3], §56)

$$
\begin{gather*}
\mathscr{D}=\frac{\mathrm{dC}}{\mathrm{dC}^{*}}, \quad \text { where } \mathscr{D}=\sqrt{\frac{-g}{a^{*}}}\left|\frac{\partial\left(x^{0}, \cdots, x^{3}\right)}{\partial\left(t, y^{1}, y^{2}, y^{3}\right)}\right| \frac{\mathrm{D} t}{\mathrm{D} s}>0 \tag{2.5}\\
\left(g=\operatorname{det}\left\|g_{\alpha \beta}\right\|, a^{*}=\operatorname{det}\left\|a_{\mathrm{LM}}^{*}\right\|\right) .
\end{gather*}
$$

Let $c^{2} \mathrm{~d} m^{*}=c^{2} k^{*} \mathrm{dC}{ }^{*}{ }^{(3)}$ be the proper gravitational mass of $\mathrm{d} \mathscr{C}$ (in energy units) in \mathscr{S}_{3}^{*}, so that k^{*} is the proper density in the reference configuration; let $k(\boldsymbol{x})$ be the (actual) proper density of conventional mass (in \mathscr{P}):

$$
\begin{equation*}
k \mathrm{dC}=k^{*} \mathrm{dC}^{*} ; \tag{2.6}
\end{equation*}
$$

hence the Lagrangian and Eulerian equations of continuity

$$
\begin{equation*}
k^{*}=\mathscr{O} k \quad, \quad\left(k u^{\alpha}\right)_{\mid \alpha}=0 \tag{2.7}
\end{equation*}
$$

hold for it; finally, let $c^{2} \mathrm{~d} m=\rho \mathrm{dC}$ be the (actual) proper gravitational mass of $\mathrm{d} \mathscr{C}$ at $\boldsymbol{x} \in \mathscr{W}_{\mathbf{P}^{*}}(\mathscr{P})$, where $\rho(\boldsymbol{x})$ is the proper density of gravitational mass. After [3] (cf. §21), we define

$$
\begin{equation*}
k r v \mathrm{dC}=c^{2} \mathrm{~d} m-c^{2} \mathrm{~d} m^{*}=\left(\rho-k c^{2}\right) \mathrm{dC}, \tag{2.8}
\end{equation*}
$$

where w is briefly called the specific internal energy (of \mathscr{C} at P^{*}).
(2) By $\mathrm{T}_{\cdots, \alpha}\left[\mathrm{T}_{\cdots / \alpha}\right]$ we mean the partial [covariant] derivative of $\mathrm{T}_{\ldots} \ldots$, and we use the following notations:

$$
{ }^{2} \mathbf{T}[\alpha \beta]=\mathbf{T}^{\alpha \beta}-\mathrm{T}^{\beta \alpha} \quad, \quad 2 \mathrm{~T}^{(\alpha \beta)}=\mathrm{T}^{\alpha \beta}+\mathrm{T}^{\beta \alpha} \quad, \quad \mathrm{D} \mathbf{T}_{\cdots} \cdots / \mathrm{D} s=\mathbf{T}_{\cdots / \alpha} u^{\alpha} .
$$

(3) c is the velocity of light in vacuo.

3. Basic laws. Thermo-elastic materials

We consider a body \mathscr{C} uncapable of electromagnetic phenomena, having the energy-momentum tensor:

$$
\begin{equation*}
\mathscr{U}_{\alpha \beta}=\rho u_{\alpha} u_{\beta}+X_{\alpha \beta}+Q_{\alpha \beta}, \quad \text { with } \quad Q_{\alpha \beta}=2 u_{(\alpha} q_{\beta)}, \tag{3.I}
\end{equation*}
$$

where $\mathrm{X}_{\alpha \beta}$ is the Cauchy stress tensor $\left(\mathrm{X}_{[\alpha \beta]}=0=\mathrm{X}_{\alpha \beta} u^{\beta}\right)$ and q_{α} is the (spatial) heat flux vector. We postulate the Einstein-Eckart gravitational equations in the form:

$$
\begin{equation*}
\mathrm{A}_{\alpha \beta}+\frac{8 \pi h}{c^{4}} \mathscr{U}_{\alpha \beta}=0 \quad\left(\mathrm{~A}_{\alpha \beta}=\mathrm{R}_{\alpha \rho}{ }^{\rho} \beta+\frac{1}{2} \mathrm{R}_{p \sigma}^{\rho \sigma} g_{\alpha \beta}\right), \tag{3.2}
\end{equation*}
$$

where $\mathrm{R}_{\alpha \beta \gamma \delta \delta}$ is the Riemann's tensor and h is the Cavendish's constant. The conservation equations $\mathscr{U}^{\alpha \beta}{ }_{\beta \beta}=0$, which follow from (3.2) by $A^{\alpha \beta}{ }_{\beta}=0$, include the energy conservation equation $u_{\alpha} \mathscr{U}_{\beta}^{\alpha \beta}=0$, which reads

$$
\begin{equation*}
k \frac{\mathrm{D} w}{\mathrm{D} s}+\mathrm{X}^{\alpha \beta} u_{(\alpha / \beta)}=-q^{\alpha}{ }_{l \alpha}-q^{\alpha} \mathrm{A}_{\alpha} . \tag{3.3}
\end{equation*}
$$

By regarding $\mathrm{X}^{\alpha \beta} u_{(\alpha / \beta)}$ as the work power of internal forces, i.e. $\delta l^{(i)} / \mathrm{D} s=$ $=\mathrm{X}^{\alpha \beta} u_{(\alpha / \beta)}$, on the basis of the $\mathrm{r}^{\text {st }}$ principle of thermodynamics we interprete the quantity $-q^{\alpha}{ }_{1 \alpha}-q^{\alpha} \mathrm{A}_{\alpha}$ as the heat absorbed by \mathscr{C} (per unit of proper volume and time), hence (cf. [3], §24),

$$
\begin{equation*}
k \frac{\mathrm{D} w}{\mathrm{D} s}+\frac{\delta l^{(i)}}{\mathrm{D} s}=\mathrm{Q}_{\mathrm{ass}}=-q^{\alpha}{ }_{/ \alpha}-q^{\alpha} \mathrm{A}_{\alpha} \tag{3.4}
\end{equation*}
$$

Let Y^{LM} be the second Piola-Kirchhoff stress tensor; it is related to $\mathrm{X}^{\text {po }}$ by

$$
\begin{equation*}
X^{\rho \sigma}=\frac{1}{\mathscr{D}} \alpha_{L}^{\rho} \alpha_{M}^{\sigma} Y^{L M} \tag{3.5}
\end{equation*}
$$

Let $\mathrm{T}(>0)[\eta]$ be the absolute temperature [specific entropy]. We assume the absence of the electromagnetic field, and, as the $2^{\text {nd }}$ principle of thermodynamics, we introduce the following relativistic version of the ClausiusDuhem inequality:

Under the definitions

$$
\begin{equation*}
\mathscr{S}^{\alpha}=k \eta u^{\alpha}+s^{\alpha} \quad, \quad s^{\alpha}=\frac{q^{\alpha}}{\mathrm{T}}\left(=\mathscr{\mathscr { S }}^{1}\right), \tag{3.6}
\end{equation*}
$$

the inequality

$$
\begin{equation*}
\mathscr{S}^{\alpha}{ }_{1 \alpha} \geq 0 \tag{3.7}
\end{equation*}
$$

must be satisfied by \mathscr{C} along every physically possible process ${ }^{(4)}$.
(4) The relativization (3.7) of the Clausius-Duhem inequality is supported in [3], App. C, by means of kinematical considerations, see also [r].

By $(3.6)_{1,2},(3.3),(3.5),(2.4)_{2},(2.7)_{1}$, and (2.5) $)_{3},(3.7)$ can be written in a Lagrangian form:

$$
\begin{equation*}
k^{*} \frac{\mathrm{D} \eta}{\mathrm{D} s}-\frac{k^{*}}{\mathrm{~T}} \frac{\mathrm{D} w}{\mathrm{D} s}-\frac{\mathrm{Y}^{\mathrm{LM}}}{\mathrm{~T}} \frac{\mathrm{D} \varepsilon_{\mathrm{LM}}}{\mathrm{D} s}-\frac{\mathscr{D} q^{\alpha}}{\mathrm{T}^{2}}\left(\mathrm{~T}_{1 \alpha}+\mathrm{TA}_{\alpha}\right) \geq 0 \tag{3.8}
\end{equation*}
$$

We say that the body is thermo-elastic (TE) at its materials point P^{*} (or y^{L}) if the following two conditions hold at $\mathrm{P}{ }^{*(5)}$:
(A) The specific internal energy w, the specific entropy η, and Y^{LM}, are twice continuously differentiable functions of $\varepsilon_{\mathrm{LM}}$ and T ; the heat flux q^{α} is a twice continuously differentiable vector valued function of $\varepsilon_{\mathrm{LM}}, \mathrm{T}, \mathrm{T}_{\frac{1}{\alpha}}$, and $\mathrm{A}_{\alpha}{ }^{(8)}$.
(B) Constraints are absent, in the (narrow) sense that admissible values of $\varepsilon_{L M}$ and T are physically compatible with arbitrary values of $\mathrm{T}_{1 \alpha}, \mathrm{D} \varepsilon_{\mathrm{LM}} / \mathrm{Ds}$, and A_{α}.

Let $\mathscr{F}=w-\mathrm{T} \eta$ be the specific free energy. Then by (A) $\mathscr{F}=$ $=\breve{\mathscr{F}}\left(y^{\mathrm{L}}, \varepsilon_{\mathrm{LM}}, \mathrm{T}\right)$ and (3.8) becomes

$$
\begin{equation*}
k^{*}\left(\frac{\partial \breve{\mathscr{F}}}{\partial \mathrm{~T}}+\eta\right) \frac{\mathrm{DT}}{\mathrm{D} s}+\left(k^{*} \frac{\partial \breve{\mathscr{F}}}{\partial \varepsilon_{\mathrm{LM}}}+\mathrm{Y}^{\mathrm{LM}}\right) \frac{\mathrm{D} \varepsilon_{\mathrm{LM}}}{\mathrm{D} s}+\frac{\mathscr{D} q^{\alpha}}{\mathrm{T}}\left(\mathrm{~T}_{/ \alpha}+\mathrm{TA}_{\alpha}\right) \leq 0 \tag{3.9}
\end{equation*}
$$

By condition (B) the values of $\mathrm{DT} / \mathrm{Ds}, \mathrm{T}_{1 \frac{1}{\alpha}}, \mathrm{D} \varepsilon_{\mathrm{LM}} / \mathrm{Ds}$, and A_{α} are arbitrary, so that (3.9) yields

$$
\begin{equation*}
\eta=-\frac{\partial \breve{F}}{\partial \mathrm{~T}}\left(y^{\mathrm{L}}, \varepsilon_{\mathrm{LM}}, \mathrm{~T}\right) \quad, \quad \mathrm{Y}^{\mathrm{LM}}=-k^{*} \frac{\partial \breve{\mathscr{F}}}{\partial \varepsilon_{\mathrm{LM}}}\left(y^{\mathrm{L}}, \varepsilon_{\mathrm{LM}}, \mathrm{~T}\right), \tag{3.10}
\end{equation*}
$$

and (3.9) simplifies into

$$
\begin{equation*}
q^{\alpha}\left(\mathrm{T}_{/ \alpha}+\mathrm{TA}_{\alpha}\right) \leq \mathrm{o} \tag{3.1I}
\end{equation*}
$$

By simple and well known considerations based on Helmholtz postulate (cf. [3], §28) $\hat{\imath}^{2} \mathscr{F} / \partial \mathrm{T}^{2}<0$ holds; hence (3.10) ${ }_{1}$ defines T as an implicit function $\tilde{\mathrm{T}}$ of y^{L}, η, and $\varepsilon_{\mathrm{LM}}$. Set $\tilde{w}\left(y^{\mathrm{L}}, \varepsilon_{\mathrm{LM}}, \eta\right)=\breve{w}\left[y^{\mathrm{L}}, \varepsilon_{\mathrm{LM}}, \tilde{\mathrm{T}}\left(y^{\mathrm{L}}, \varepsilon_{\mathrm{LM}}, \eta\right)\right]$. By a deduction like the above one we derive

$$
\begin{equation*}
\mathrm{T}=\frac{\partial \tilde{w}}{\partial \eta}\left(y^{\mathrm{L}}, \varepsilon_{\mathrm{LM}}, \eta\right) \quad, \quad \mathrm{Y}^{\mathrm{LM}}=-k^{*} \frac{\partial \tilde{w}^{\prime}}{\partial \varepsilon_{\mathrm{LM}}}\left(y^{\mathrm{L}}, \varepsilon_{\mathrm{LM}}, \eta\right) . \tag{3.12}
\end{equation*}
$$

(5) This definition is a slightly modified version of Bressan's definition of elastic materials in [3], § 63 .
(6) A possible dependence of q^{α} on the 4 -acceleration A_{α} is suggested by the expression (3.4)2 for the absorbed heat $Q_{\text {ass }}$ by P^{*}.

4 - RENDICONTI 1980, vol. LXIX, fasc. 1-2.

Now suppose that the following expression (possibly non-linear in $\mathrm{T}_{/ \frac{1}{\alpha} \text {) }}$ holds for q^{α} :

$$
\begin{equation*}
q^{\alpha}=-\left[\tilde{x}^{\alpha \beta}\left(y^{\mathrm{L}}, \varepsilon_{\mathrm{LM}}, \mathrm{~T}, \mathrm{~T}_{\frac{1}{\rho}}\right)\right]\left(\mathrm{T}_{\frac{1}{\beta}}+\mathrm{TA}_{\beta}\right), \quad x^{\alpha \beta} u_{\beta}=0=u_{\alpha} x^{\alpha \beta} \tag{3.13}
\end{equation*}
$$

then, for fixed values of $\varepsilon_{L M}, T$, and $T_{l_{\rho}^{\prime}}$ (see (B)), and for arbitrary values of A_{α}, hence of $T_{1 / \alpha}+T A_{\alpha}$, the validity of inequality (3.II) implies that $\tilde{x}^{\alpha \beta}$ is positive definite.

Note that in the classical case the analogous result is deduced only for $\partial \tilde{x}^{i j} / \partial \mathrm{T}_{, k}=\mathrm{o}$.

Let $\mathscr{C} \in \mathrm{TE}$ and let (x) be an admissible reference frame. Then we call thermodynamic process \mathscr{P} for \mathscr{C} any triple

$$
\begin{equation*}
\mathscr{P}=\langle\boldsymbol{g}, \mathscr{M}, \eta\rangle \tag{3.14}
\end{equation*}
$$

where $\boldsymbol{g}, \mathscr{M}$, and η are the fields $\tilde{g}_{\alpha \beta}\left(x^{\rho}\right), \tilde{x}^{\alpha}\left(t, y^{L}\right)$, and $\tilde{\eta}\left(x^{\rho}\right)$ that solve the Einstein-Eckart equations (3.1,2).

4. A variational principle

It is known (cf. [3], §69) that the Einstein equations (3.I, 2) for $\overline{\mathscr{C}}(\in \mathrm{TE})$ uncapable of heat conduction $\left(Q^{\alpha \beta} \equiv 0\right)$ are equivalent to the variational condition:

$$
\begin{equation*}
\delta_{\mathscr{P}} \mathrm{F}[\mathscr{P}]=0 \quad \text { for all } \quad \delta \mathscr{P}=\langle\delta g, o, o\rangle \tag{4.1}
\end{equation*}
$$

where
(4.2) $\mathrm{F}[\mathscr{P}]=\int_{\Omega} \sqrt{-g}\left(\mathrm{R}+\frac{\mathrm{I} 6 \pi h}{c^{4}} \rho\right) \mathrm{d} x \quad\left(\mathrm{R}=\mathrm{R}_{\alpha \beta}^{\alpha \beta}, \mathrm{d} x=\mathrm{d} x^{0} \cdots \mathrm{~d} x^{3}\right)$,
$\delta g_{\alpha \beta} \in C_{(\Omega)}^{(2)}$ and $\delta g_{\alpha \beta}=0=\delta g_{\alpha \beta, \gamma}$ on the frontier $\mathscr{F} \Omega$ of the domain $\Omega \subset \mathscr{W}_{\overline{\mathscr{G}}}(\mathscr{P})$.

The variations $\delta \mathscr{P}$ considered above are isentropic ($\delta_{\mathscr{P}} \eta=0$); it is justified by the fact that, for $q^{\alpha} \equiv 0$, the energy conservation equation (3.3) becomes $\mathrm{D} \eta / \mathrm{D} s=0$ by (3.12), (3.5), and (2.4); hence $\eta=\tilde{\eta}\left(y^{\mathrm{L}}\right)$.

Now in connection with a general body $\mathscr{C} \in \mathrm{TE}$ we consider the vector:

$$
\begin{equation*}
\mathscr{S}^{* \alpha}=\mathscr{D} \mathscr{S}^{\alpha}=k^{*} \eta u^{\alpha}+s^{* \alpha} \quad, \quad s^{* \alpha}=\mathscr{D} s^{\alpha} \quad \text { (see (3.6)), } \tag{4.3}
\end{equation*}
$$

and its variation for some $\delta \mathscr{P}=\langle\delta g, o, \delta \eta\rangle$:

$$
\begin{equation*}
\delta_{\mathscr{P}} \mathscr{P}^{* \alpha}=k^{*} \eta \delta_{\mathscr{P}} u^{\alpha}+k^{\alpha} u^{\alpha} \delta \eta+\delta_{\mathscr{P}} s^{* \alpha} . \tag{4.4}
\end{equation*}
$$

In particular we have:

$$
\begin{equation*}
u_{\alpha} \delta_{\mathscr{F}} \mathscr{P}^{* \alpha}=k^{*} \eta u_{\alpha} \delta_{\mathscr{F}} u^{\alpha}-k^{*} \delta \eta+u_{\alpha} \delta_{\mathscr{F}} s^{* \alpha} . \tag{4.5}
\end{equation*}
$$

If $q^{\alpha} \equiv 0$ holds for \mathscr{C} then by $(4.3)_{3}$ and (3.6) $)_{2}$ we have $\delta_{\mathscr{F}} s^{* \alpha}=0$ and, in this case, by (4.5) we note that the relation

$$
\begin{equation*}
u_{\alpha} \delta_{\mathscr{P}} \mathscr{P}^{* \alpha}=k^{*} \eta u_{\alpha} \delta_{\mathscr{P}} u^{\alpha} \tag{4.6}
\end{equation*}
$$

characterizes the isentropic variations $\delta \mathscr{P}$ (for which $\delta \eta \equiv 0$). Since this characterization holds only in the case $q^{\alpha} \equiv 0$, (4.6) will be called the weakly isentropic variational condition. We will use it in a basic way.

$$
^{} *
$$

Now we say that the process $\mathscr{P}=\langle\boldsymbol{g}, \mathscr{M}, \eta\rangle$ for $\mathscr{C} \in$ TE satisfies the weakly isentropic variational condition $\mathrm{VC}_{\mathscr{\not}}^{(\text {(w.i.) }}$ [unrestricted variational condition $\left.\mathrm{VC}_{\mathscr{P}}^{(\text {(n. })}\right]$ in Ω, if for any variation $\delta \mathscr{P}=\langle\delta \mathbf{g}, o, \delta \eta\rangle$ of \mathscr{P} that fulfils the conditions

$$
\begin{equation*}
\delta g_{\alpha \beta} \in \mathrm{C}^{(2)}(\Omega) \quad, \quad \delta g_{\alpha \beta}=0=\delta g_{\alpha \beta, \gamma} \quad \text { on } \quad \mathscr{F} \Omega \tag{4.7}
\end{equation*}
$$

and (4.6) [and for arbitrary variation $\left.\delta \eta \in \mathrm{C}^{(0)}(\Omega)\right]$ in Ω, we have the first [second] of the relations (see (4.2)):

$$
\begin{gather*}
\delta_{\mathscr{P}} \mathrm{F}[\mathscr{P}]=\mathrm{o}, \tag{4.8}\\
\left(4.8^{\prime}\right) \quad \delta_{\mathscr{P}} \mathrm{F}[\mathscr{P}]=\frac{\mathrm{I} \sigma \pi h}{c^{4}} \int_{\Omega} \frac{\mathrm{T}}{\mathscr{D}} u_{\alpha}\left(k^{*} \eta \delta_{\mathscr{P}} u^{\alpha}-\delta_{\mathscr{P}} \mathscr{P}^{* \alpha}\right) \sqrt{-g} \mathrm{~d} x .
\end{gather*}
$$

Theorem. A continuous body $\mathscr{C} \in \mathrm{TE}$ satisfies the variational condition $\mathrm{VC}_{\mathscr{F}}^{(\text {(w.j.) }}\left[\mathrm{VC}_{\neq 3}^{\text {(un.) }}\right]$ in Ω iff the Einstein-Eckart equations $(3.1,2)$ hold for it in Ω.

Proof. The following formulas for arbitrary $\delta g_{\alpha \beta}$ and $\delta \eta$, well known in the adiabatic case (cf. [3], §68), are still holding because the varied quantities do not depend on η :
(4.9) $\left\{\begin{array}{c}\delta_{\mathscr{F}} u^{\alpha}=\frac{1}{2} u^{\alpha} u^{\rho} u^{\sigma} \delta g_{\rho \sigma}, \quad \delta_{\mathscr{P}} u_{\alpha}=u^{\sigma} \delta g_{(\alpha \sigma)}+\frac{1}{2} u_{\alpha} u^{\rho} u^{\sigma} \delta g_{\rho \sigma}, \\ \delta_{\mathscr{F}} \sqrt{-g}=\frac{1}{2} \sqrt{-g} g^{\rho \sigma} \delta g_{\rho \sigma} \quad, \quad \delta \mathscr{P} k=-\frac{1}{2} k^{\frac{1}{\rho \sigma}} \delta g_{\rho \sigma}, \\ \delta_{\mathscr{P}} \varepsilon_{\mathrm{LM}}=\frac{1}{2} \alpha_{\mathrm{L}}^{\rho} \alpha_{\mathrm{M}}^{\sigma} \delta g_{\rho \sigma} .\end{array}\right.$

Since $s^{* \alpha} u_{\alpha}=0$, whence $\delta_{\mathscr{P}}\left(s^{* \alpha} u_{\alpha}\right)=0$, we have $u_{\alpha} \delta_{\mathscr{P}} s^{* \alpha}=-s^{* \alpha} \delta_{\mathscr{P}} u_{\alpha}$, and, by using (4.3) $)_{3}$ and (4.9) $)_{2}$, relation (4.5) becomes

$$
\begin{equation*}
k^{*} \delta \eta=k^{*} \eta u_{\alpha} \delta_{\mathscr{P}} u^{\alpha}-u_{\alpha} \delta_{\mathscr{P}} \mathscr{P}^{* \alpha}-\mathscr{D} s^{(\alpha} u^{\beta)} \delta g_{\alpha \beta} . \tag{4.10}
\end{equation*}
$$

For $\delta g_{\alpha \beta}$, fulfilling (4.7) we have, as is well known (cf. [3], (69.12)),

$$
\begin{equation*}
\delta_{\mathscr{P}} \int_{\Omega} \sqrt{-g} \mathrm{R} \mathrm{~d} x=-\int_{\Omega} \mathrm{A}^{\alpha \beta} \delta g_{\alpha \beta} \sqrt{-g} \mathrm{~d} x . \tag{4.1II}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
\delta_{\mathscr{F}}(\sqrt{-g} \rho)=\left(w+c^{2}\right) \delta_{\mathscr{P}}(\sqrt{-g} k)+\sqrt{-g} k \delta_{\mathscr{P}} w . \tag{4.12}
\end{equation*}
$$

and by (4.9) 3,4 we have

$$
\begin{equation*}
\left(w+c^{2}\right) \delta_{\mathscr{P}}(\sqrt{-g} k)=-\frac{\sqrt{-g}}{2} \rho u^{\alpha} u^{\beta} \delta g_{\alpha \beta}, \tag{4.13}
\end{equation*}
$$

while, by (3.12), (4.9) 5 , (3.5), and (4.10),

$$
\begin{aligned}
\sqrt{-g} k \delta_{\mathscr{P}} w= & \sqrt{-g} k\left(\frac{\partial \tilde{w}}{\partial \varepsilon_{\mathrm{LM}}} \delta \mathscr{P} \varepsilon_{\mathrm{LM}}+\frac{\partial \tilde{w}}{\partial \eta} \delta r_{i}\right) \\
= & \sqrt{-g} k\left(-\frac{1}{2} \frac{\mathrm{Y}^{\mathrm{LM}}}{k^{*}} \alpha_{\mathrm{L}}^{\alpha} \alpha_{\mathrm{M}}^{\beta} \delta g_{\alpha \beta}+\mathrm{T} \delta \eta\right) \\
= & \sqrt{-g} k\left[-\frac{\mathrm{I}}{2 k} \mathrm{X}^{\alpha \beta} \delta g_{\alpha \beta}\right.
\end{aligned} \quad+\frac{\mathrm{T}}{k^{*}}\left(-\mathscr{D} s^{(\alpha} u^{\beta)} \delta g_{\alpha \beta}+7 .\right.
$$

$$
\begin{align*}
\sqrt{-g} k \delta_{\mathscr{P}} w & =-\frac{\sqrt{-g}}{2}\left(\mathrm{X}^{\alpha \beta}+2 \mathrm{Ts}{ }^{(\alpha} u^{\beta)}\right) \delta g_{\alpha \beta}+ \tag{4.14}\\
& +\sqrt{-g} \frac{\mathrm{~T}}{\mathscr{D}}\left(k^{*} \eta u_{\alpha} \delta_{\mathscr{P}} u^{\alpha}-u_{\alpha} \delta_{\mathscr{P}} \mathscr{S}^{* \alpha}\right) .
\end{align*}
$$

Remembering that $s^{\alpha}=q^{\alpha} \mathrm{T}^{-1}$ and $\mathrm{Q}^{\alpha \beta}=2 q^{(\alpha} u^{\beta)}$, by (4.1I-14) we have:
(4.I5) $\delta_{\mathscr{P}} \mathrm{F}[\mathscr{P}]=-\int_{\Omega} \sqrt{-g}\left[\mathrm{~A}^{\alpha \beta}+\frac{8 \pi h}{c^{4}}\left(\rho u^{\alpha} u^{\beta}+\mathrm{X}^{\alpha \beta}+\mathrm{Q}^{\alpha \beta}\right)\right] \delta g_{\alpha \beta} \mathrm{d} x+$

$$
+\frac{\mathrm{I} 6 \pi h}{c^{4}} \int_{\Omega} \sqrt{-g} \frac{\mathrm{~T}}{\mathscr{D}} u_{\alpha}\left(k^{*} \eta \delta_{\mathscr{F}} u^{\alpha}-\delta_{\mathscr{R}} \mathscr{S}^{* \alpha}\right) \mathrm{d} x .
$$

By the arbitrariness of $\delta g_{\alpha \beta}$ and the continuity of $\left[A^{\alpha \beta}+\frac{8 \pi h}{c^{4}}\left(\rho u^{\alpha} u^{\beta}+\cdots\right)\right]$, the two versions of the theorem easily follow. q. e. d.

The theorem above can be extended in a natural way to more general classes of materials, such as the polar materials [2] and the materials of order $n \geq 2$ [5].

References

[I] A. Bressan (1970) - Sul significato cinematico della divergenza spaziotemporale dei vettori spaziali rappresentanti un flusso nel cronotopo relativistico, "Rend. Acc. Naz. Lincei», (VIII) 49, 57.
[2] A. Bressan (1972) - Principi variazionali relativistici e coppie di contatto. "Ann. Mat. Pura Appl.», (IV) 94, 201.
[3] A. Bressan (1978) - Relativistic Theories of Materials, Springer-Verlag, Berlin Heidelberg New York.
[4] M. Pitteri (1975) - Tre variational principles of second order materials in general relativity, "Ann. Mat. Pura Appl.», (IV) Io6, 315.
[5] M. Pitteri (1977) - Materials of order N from a variational point of view within general relativity, "Ann. Mat. Pura Appl.》, (IV) rI3, 199.
[6] H. P. SCHÖPF (1964) - Allegemeinrelativistiche Prinzipien der Kontinuumsmechanik, «Ann. Physik», 12, 337.

