Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Ida Cattaneo Gasparini, Giuseppe De Cecco

 Complementary distributions and Pontrjagin classes

 Complementary distributions and Pontrjagin classes}

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 69 (1980), n.1-2, p. 26-30. Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1980_8_69_1-2_26_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Geometria differenziale. - Complementary distributions and Pontrjagin classes (*). Nota (**) di Ida Cattaneo Gasparini e Giuseppe De Cecco, presentata dal Socio straniero A. Lichnerowicz.

RIASSUnto. - Da una condizione necessaria per l'esistenza di $k(>2)$ distribuzioni complementari su una varietà si deducono legami tra le classi di Pontrjagin delle distribuzioni e dei fibrati trasversi.

Let M be a riemannian smooth orientable manifold of dimension n (even or odd) and suppose that M has k complementary (smooth) distributions of oriented n_{i}-planes ($i=1, \cdots, k$); i.e. for every point $p \in \mathrm{M}$ the tangent space $T_{p}(M)$ can be decomposed into the direct sum of the subspaces $\mathrm{T}_{p}^{1}, \cdots, \mathrm{~T}_{p}^{k}$ of $\mathrm{T}_{p}(\mathrm{M})$ where $\operatorname{dim} \mathrm{T}_{p}^{i}=n_{i}$ (and hence $n_{1}+\cdots$ $\cdots+n_{k}=n$).

Then one says that M admits an "almost product " or " almost multiproduct" structure.

In a paper of 1969 [3] one of the present authors showed that the vanishing of certain Pontrjagin classes is a necessary condition for the existence of k complementary distributions on M. After a review of these results we prove the following

Theorem A. Let M be a riemannian smooth orientable manifold of dimension n. Furthermore let M have k complementary distributions $\mathrm{E}_{i} \subset \mathrm{TM}$ and let the bundle $Q_{i}=\mathrm{TM} / \mathrm{E}_{i}$ have fibre of dimension q_{i} with

$$
q_{i}=n-n_{i} \quad \text { and } \quad n_{1}+\cdots+n_{k}=n .
$$

Finally let $p_{r}(\mathrm{E}) \in \mathrm{H}^{4 r}(\mathrm{M} ; \mathbf{R})$ denote the r-th real Pontrjagin class of the bundle E. Then if

$$
p_{h}\left(\mathrm{Q}_{i}\right) p_{s}\left(\mathrm{E}_{i}\right)=0 \quad \forall h, s \geq \mathrm{I} \quad \text { and } h+s=r
$$

one has

$$
p_{r}\left(Q_{i}\right)=0 \quad 2 r>\max \left(n_{1}, \cdots, n_{k}\right) .
$$

Using Bott's "Vanishing Theorem" one can, in a certain sense invert the preceding result obtaining

Theorem B. Let M be a riemannian smooth orientable manifold of dimension n. Furthermore let M have k complementary distributions $\mathrm{E}_{i} \subset \mathrm{TM}$
(*) This work was carried out in the framework of the activities of the GNSAGA (CNR - Italy).
(**) Pervenuta all'Accademia l'i luglio 1980.
and let the bundle $Q_{i}=\mathrm{TM} / \mathrm{E}_{i}$ have fibre of dimension q_{i} with

$$
q_{i}=n-n_{i} \quad \text { and } \quad n_{1}+\cdots+n_{k}=n
$$

If Q_{i} is integrable, then for $2 r>\max \left(n_{1}, \cdots, n_{k}, 4 q_{i}\right)$

$$
p_{h}\left(\mathrm{Q}_{i}\right) p_{s}\left(\mathrm{E}_{i}\right)=\mathrm{o} \quad \forall h, s \geq \mathrm{I} \quad \text { and } h+s=r
$$

holds.
In order to give a self-contained presentation we recall the necessary preliminaries.

i. Preliminaries

Let M be a smooth (paracompact) manifold and let E be a vector \mathbf{R}^{q}-bundle on M . As is well known, the total (real) Pontrjagin class $p(\mathrm{E})$ of E is defined by

$$
p(\mathrm{E})=\mathrm{I}+p_{1}(\mathrm{E})+\cdots+p_{[q / 2]}(\mathrm{E})=\left[\operatorname{det}\left(\mathrm{I}-\frac{\mathrm{I}}{2 \pi} \Omega\right)\right]
$$

where Ω is the curvature of an arbitrary connection on E and

$$
p_{r}(\mathrm{E}) \in \mathrm{H}^{4 r}(\mathrm{M} ; \mathbf{R}),
$$

where $\mathrm{H}^{*}(\mathrm{M} ; \mathbf{R})$ is the de Rham cohomology ring of $\mathrm{M} . \quad p_{r}(\mathrm{E})$ is called the r-the Pontrjagin class of E . Clearly $p_{r}(\mathrm{E})=0$ for $4 r>n$ if $n=\operatorname{dim} \mathrm{M}$. Moreover if E is an oriented bundle of even dimension q, then the class $p_{q / 2}(\mathrm{E})$, which is locally represented by the closed form $(2 \pi)^{-q} \operatorname{det} \Omega$, equals the square of the Euler class; this latter is strictly connected with the Euler-Poincaré characteristic of the manifold under consideration, if $\mathrm{E}=\mathrm{TM}$.

If E is the tangent bundle TM, then the classes are also called Pontrjagin classes of M and are often denoted by $\mathrm{P}_{r}(\mathrm{M})$.

Let Ω be the curvature for of a connection on the principal fibre bundle of orthonormal frames, then the explicit expression of Pontrjagin classes is given by ${ }^{(1)}$

$$
\begin{equation*}
p_{r}(\mathrm{TM})=\left[\frac{[(2 r)!]^{2}}{\left(2^{r} r!\right)^{2}(2 \pi)^{2 r}} \sum_{(i)} \Theta_{i_{1} \cdots i_{2 r}}^{(2 r)} \wedge \Theta_{i_{1} \cdots i_{2 r}}^{(2 r)}\right] \tag{1.I}
\end{equation*}
$$

where

$$
\begin{equation*}
\Theta_{i_{1} \cdots i_{s}}^{(s)}=\frac{1}{s!} \sum_{(j)} \delta\left(i_{1}, \cdots, i_{s} ; j_{1}, \cdots, j_{s}\right) \Omega_{i 1 j_{2}} \wedge \cdots \wedge \Omega_{j_{s-1} j_{s}} \tag{1.2}
\end{equation*}
$$

s is an even integer and $\delta\left(i_{1} \cdots, i_{s} ; j_{1}, \cdots, j_{s}\right)$ is the generalised Kronecker symbol.
(1) See J. A. Thorpe [6].

For n even, the n-form

$$
\begin{equation*}
\Omega^{(n)}=\left[2^{n} \pi^{n / 2}\left(\frac{n}{2}\right)!\right]^{-1} \sum \varepsilon_{i_{1} \cdots i_{n}} \Omega_{i_{1} i_{2}} \wedge \cdots \wedge \Omega_{i_{n-1} i_{n}} \tag{I.3}
\end{equation*}
$$

called Gauss curvature form of M , is a representative of the Euler class of TM and if M is compact and orientable, the Gauss-Bonnet theorem says that

$$
\int_{\mathrm{M}} f^{*} \Omega^{(n)}=\chi(\mathrm{M})
$$

where $\chi(M)$ is the Euler-Poincaré characteristic of M and $f: M \rightarrow \widetilde{G}_{n}(M)$ is an orientation of $M, \tilde{G}_{n}(M)$ being the Grassmann bundle of the oriented n-planes tangent to M .

2. A vanishing theorem

We can now prove the following theorem [3].
Theorem (2.1). Let M be a riemannian smooth orientable manifold of dimension n which admits k complementary (smooth) distributions of oriented n_{i}-planes $(i=1, \cdots, k)$. Then the real Pontrjagin classes $\mathrm{P}_{r}(\mathrm{M})$ are null for $2 r>\max \left(n_{1}, \cdots, n_{k}\right)$.

Proof. Let \tilde{E} be the principal fibre bundle of the orthonormal frames (associated to the tangent). Its structural group is $\tilde{\mathrm{G}}=\mathrm{SO}(n)$ (the rotation group). We recall that the Lie algebra \tilde{G} of $\mathrm{SO}(n)$ can be identified with the space of the skew-symmetric matrices of order n.

Let us consider the subbundle E of $\tilde{\mathrm{E}}$ formed of the frames "adapted" to the distributions, viz. the orthogonal frames $\left\{e_{i}\right\}(i=1, \cdots, n)$ so that the vectors

$$
\left\{e_{\alpha_{j}}\right\} \alpha_{j}=n_{1}+\cdots+n_{j-1}+\mathrm{I}, \cdots, n_{1}+\cdots+n_{j} \quad\left(n_{0}=0\right)
$$

form a basis for T^{j}. The bundle E can be regarded as having structural group

$$
\mathrm{G}=\mathrm{SO}\left(n_{1}\right) \times \mathrm{SO}\left(n_{2}\right) \times \cdots \times \operatorname{SO}\left(n_{k}\right) .
$$

A connection ω on E is represented by a 1 -form which takes values in the Lie algebra \mathfrak{G} of G, where \mathfrak{G} is the direct product of the Lie algebras of SO $\left(n_{r}\right)$. Hence one obtains

$$
\begin{array}{cr}
\omega_{i i}=0 \quad \omega_{i j}+\omega_{j i}=0 & i, j=1, \cdots, n \\
\omega_{\alpha_{i} \beta_{j}}=0 \quad i \neq j & i, j=1, \cdots, k ; \\
\alpha_{i}, \beta_{j}=n_{1}+\cdots+n_{j-1}+1, \cdots, n_{1}+\cdots+n_{j} .
\end{array}
$$

Analogous relations hold for the components of the curvature form Ω. Therefore, if $2 r>\max \left(n_{1}, \cdots, n_{k}\right)$, then each term in (I.2) will have a factor $\Omega_{\alpha_{i} \beta_{j}}$ with $i \neq j$; the assertion $p_{r}(\mathrm{TM})=\mathrm{P}_{r}(\mathrm{M})=0$ then follows from (I.I).

Remarks (2.2). If $k=n$ and therefore $n_{1}=I \forall i$ (i.e. the manifold is parallelizable) then $\mathrm{P}_{r}(\mathrm{M})=o \forall r$. It follows that the curvature vanishes. The manifold is then flat.
(2.3). For $k=2$ (and obviously for $k=1$) the theorem is not meaningful. As for $n_{1}+n_{2}=n, \max \left(n_{1}, n_{2}\right) \geq[n / 2]$ and consequently $\mathrm{P}_{r}(\mathrm{M})=0$ $\forall 2 r>\max \left(n_{1}, n_{2}\right)$.
(2.4). It is worth noticing that the existence of a distribution of q-planes implies the existence of a distribution of $(n-q)$-planes. An argument analogous to the one followed above, using the Gauss curvature form, yields the following

Theorem (2.5). Let M be a smooth compact orientable manifold of dimension even n and suppose that it has a distribution of oriented q-planes with q odd ($1 \leq q<n$). Then the Euler-Poincare characteristic of M is null.

3. Proof of theorems A and B

(3.1). To every distribution there corresponds a smooth subbundle E_{i} of the tangent bundle with the fibre of dimension n_{i}. Denote the quotient bundle by $Q_{i}=\mathrm{TM} / \mathrm{E}_{i}$. From the Whitney duality formula $p(\mathrm{TM})=$ $=p\left(\mathrm{Q}_{i}\right) p\left(\mathrm{E}_{i}\right)$ it follows that

$$
\begin{equation*}
p_{r}(\mathrm{TM})=p_{r}\left(\mathrm{Q}_{i}\right)+p_{r-1}\left(\mathrm{Q}_{i}\right) p_{1}\left(\mathrm{E}_{i}\right)+\cdots+p_{1}\left(\mathrm{Q}_{i}\right) p_{r-1}\left(\mathrm{E}_{i}\right)+p_{r}\left(\mathrm{E}_{i}\right) \tag{3.2}
\end{equation*}
$$

where the product between classes is the "cup product" in the ring $\mathrm{H}^{*}(\mathrm{M} ; \mathbf{R})$.

If $2 r>n_{i}$, then $r>n_{i} / 2$ and hence $p_{r}\left(\mathrm{E}_{i}\right)=0$. If moreover

$$
\begin{equation*}
p_{h}\left(\mathrm{Q}_{i}\right) p_{s}\left(\mathrm{E}_{i}\right)=\mathrm{o} \quad \forall h, s \geq \mathrm{I}, h+s=r \tag{3.3}
\end{equation*}
$$

then

$$
p_{r}(\mathrm{TM})=p_{r}\left(\mathrm{Q}_{i}\right) \quad 2 r>n_{i}
$$

Notice that, since the Pontrjagin ring may have divisors of zero, condition (3.3) does not imply that either $p_{h}\left(\mathrm{Q}_{i}\right)=0$ or $p_{s}\left(\mathrm{E}_{i}\right)=0$. On account of our assumptions, from theorem (I.I) one can conclude that

$$
p_{r}\left(Q_{i}\right)=0 \quad 2 r>\max \left(n_{1}, \cdots, n_{k}\right)
$$

This proves theorem A.
（3．4）．It is well known that if $\mathrm{E}_{i} \subset \mathrm{TM}$ is isomorphic to an integrable subbundle，then by Bott＇s theorem

$$
p_{r}\left(Q_{i}\right)=0 \quad r>2 q_{i}
$$

where $q_{i}=n-n_{i}$ ．Hence in the assumptions of theorem A，if

$$
m=\max \left(n_{1}, \cdots, n_{k}\right)<4 q_{i}
$$

then one has for the integers h for which $m<h<4 q_{i}$

$$
p_{r}\left(\mathrm{Q}_{i}\right)=0 \quad 2 r>h
$$

without assuming that Q_{i} be integrable．This is meaningful if $k>2$ ．
（3．5）．Conversely let us assume Q_{i} to be integrable．Then，under our assumptions，one has at the same time

$$
p_{r}(\mathrm{TM})=0 \quad p_{r}\left(\mathrm{Q}_{i}\right)=0 \quad 2 r>\max \left(m, 4 q_{i}\right)
$$

hence an account of（3．2）

$$
p_{h}\left(\mathrm{Q}_{i}\right) \mathrm{P}_{s}\left(\mathrm{E}_{i}\right)=0 \quad \forall h, s \geq \mathrm{I}, h+s=r .
$$

This ends the proof of theorem B．
R emark．The results of theorem（2．1）hold in the more general situation of an almost multifoliated riemannian structures on a manifold，i．e．

$$
\mathrm{TM}=\mathrm{E}_{1}+\cdots+\mathrm{E}_{k}
$$

where E_{i} are not necessarily complementary．Infact by increasing the number of distributions，with a suitable choice of the metric［7］it is possible go back to the previous situation．

References

［1］R．Bott（1972）－Lectures on characteristic classes and foliations，«Lect．Notes in Math．＂ 279，Springer，1－94．
［2］I．Cattaneo Gasparini（1963）－Connessioni adattate a una struttura quasi prodotto， ＂Ann．Mat．pura e appl．》，63，133－1 50.
［3］I．Cattaneo Gasparini（i968－1969）－Curvatura e classi caratteristiche，«Rend．Sem． Mat．Un．»，Torino，vol．28，19－30．
［4］F．W．Kamber，Ph．Tondeur（1975）－Foliated Bundles and Characteristic Classes， ＂Lect．Notes in Math．》，493，Springer．
［5］H．V．Pittie（1976）－Characteristic classes of foliations，Pitman Pub．
［6］J．A．Thorpe（1964）－Sectional Curvature and Characteristic Classes，«Ann．of Math．》， 8o，429－443．
［7］I．Vaisman（1970）－Almost－multifoliate Riemannian manifolds，＂An．Sti．Univ．Al．I． Cuza»，sect．1，16，97－104．

