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Geometria differenziale. — Complementary distributions and Pon-
triagin classes . Nota ¢ di Ipa CaTTaANEO GASPARINI € GIUSEPPE
DEe Cecco, presentata dal Socio straniero A. LICHNEROWICZ.

R1ASSUNTO. — Da una condizione necessaria per l'esistenza di £ (> 2) distribuzioni
complementari su una varieta si deducono legami tra le classi di Pontrjagin delle distribuziont
e dei fibrati trasversi.

Let M be a riemannian smooth orientable manifold of dimension 7
(even or odd) and suppose that M has £ complementary (smooth) distri-
butions of oriented #;planes (¢ =1,.--, ); i.e. for every point peM the
tangent space T, (M) can be decomposed into the direct sum of the
subspaces Tp,---, Ts of T, (M) where dim Ty = n; (and hence 7 +---
ooy = 7).

Then one says that M admits an
product ”’ structure.

In a paper of 1969 [3] one of the present authors showed that the
vanishing of certain Pontrjagin classes is a necessary condition for the
existence of 2 complementary distributions on M. After a review of these
results we prove the following

¢

“almost product” or “ almost multi-

THEOREM A. Let M be a riemannian swmooth orientable manifold of
dimension n. Furthermore let M have k complementary distributions E;< TM
and let the bundle Q, = TM/E, have fibre of dimension q; with

qs = n—mn, and 7 +--Fup=mn.

Finally let p,(EYe H¥ (M ; R) denote the r-th veal Pontrjagin class of the
bundle X.. Then if
21 Q) 25 (E;) =0 Vi,s>1 and 2 +s=7r
one has
| 5, @Qy)=o0 27 >max (7, -, %) .

Using Bott’s “ Vanishing Theorem ” one can, in a certain sense invert
the preceding result obtaining

THEOREM B. Let M be a riemannian smooth orientable manifold of
dimension n. Furthermore let M have k complementary distributions E; < TM

(*) This work was carried out in the framework of the activities of the GNSAGA
(CNR - TItaly).
(**) Pervenuta all’Accademia 1’1 luglio 1980.
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and let the bundle Q, = TM|E; have fibre of dimension q; with
qi=n—n; and #n 4+ =mn.
If Q; is integrable, then for 27 > max (7y, -+, %, 4 ¢;)

Q) 25 (Ey) =0 Vi,s>1 and A-ts=r
holds.

In order to give a self-contained presentation we recall the necessary
preliminaries.

I. PRELIMINARIES

Let M be a smooth (paracompact) manifold and let E be a vector
R2-bundle on M. As is well known, the total (real) Pontrjagin class p (E)
of E is defined by

PE) =14 pE) 4+ prgn (E) = [det (I—Z_IEQ)J

where Q is the curvature of an arbitrary connection on E and
2, (Eye H¥* (M ; R),

where H*(M ; R) is the de Rham cohomology ring of M. 2,(E) is called
the 7-the Pontrjagin class of E. Clearly p,(E)=o0 for 47> » if » = dimM.
Moreover if E is an oriented bundle of even dimension ¢, then the class
pge (E), which is locally represented by the closed form (2 w)~?det Q,
equals the square of the Euler class; this latter is strictly connected with
the FEuler-Poincaré characteristic of the manifold under consideration, if
E =TM.

If E is the tangent bundle TM, then the classes are also called Pontrjagin
classes of M and are often denoted by P, (M).

Let Q be the curvature for of a connection on the principal fibre bundle
of orthonormal frames, then the explicit expression of Pontrjagin classes
is given by @

(e @

112
(1.1) £, (TM) — [—K—“L]— >, 0, A @%'.‘..iz,]
where ’
) I ] . . . . '
(1.2) 0.1, = 5 (24 8(ivyigs i osds) Qup Ao A Qjaze
: 7}

s is an evenr integer and 8 (4, -, 2,51, +, /s is the generalised Kronecker
symbol.

(1) See J.A. Thorpe [6].
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For # even, the z-form
k) ) ) -1
‘ ”
. (1.3) | Q(n) — lzn Tc"/2 (7) !] 25i1~--i,, Qiﬂ'z A A Qin-ﬂn

called Gawuss curvature form of M, is a representative of the Euler class
of TM and if M is compact and orientable, the Gauss-Bonnet theorem says
that

[7+a® <o

M

where y (M) is the Euler-Poincaré characteristic of M and f:M — G, (M)
is an orientation of M , G, (M) being the Grassmann bundle of the oriented
n-planes tangent to M. ‘

2. A VANISHING THEOREM

We can now prove the following theorem [3].

THEOREM (2.1). Let M be a riemannian smooth orientable manifold of
dimension n which admits k complementary (smooth) distributions of oriented
ni-planes (i =1,---, k). Then the real Pontrjagin classes P,(M) are null
Jor 27 > max (ny,- -+, 7).

Proof. Let E be the principal fibre bundle of the orthonormal frames
(associated to the tangent). Its structural group is G = SO (%) (the rota-
tion group). We recall that the Lie algebra & of SO (») can be identified
with the space of the skew-symmetric matrices of order 7.

Let us consider the subbundle E of £ formed of the frames ‘adapted”
to the distributions, viz. the orthogonal frames {¢;} (# =1,---,%) so that
the vectors

{eaj}“j=%1+"'+%,-_l+l,"',%1+"'+%j (7o = 0)

form a basis for T°. The bundle E can be regarded as having structural
group -
G = 50 (7,) XSO (7,) X « + + XSO (253 .

A connection ® on E is represented by a 1-form which takes values in the
Lie algebra ® of G, where & is the direct product of the Lie algebras
of SO (#,). Hence one obtains

Wy =0’ Wy + 0 =0 i, =1, n
mfﬂiﬂj=9 Z#] i’]= I""’k;

i, Bi=mterrtng 1,0y
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Analogous relations hold for the components of the curvature form Q.
Therefore, if 27 > max (s, -, ), then each term in (1.2) will have a
factor Qu;p; with 7547; the assertion p,(TM)=P,(M)=o0 then follows
from (1.1).

Remarks (2.2). If £#=n and therefore 7, = 1 V7 (i.e. the manifold is
parallelizable) then P,(M) =o0Vr. It follows that the curvature vanishes.
The manifold is then flat.

(2.3). For £2=12 (and obviously for £ = 1) the theorem is not meaning-
ful. As-for », + n, = », max (ny, 7#,) = [#/2] and consequently P, (M) = o
V2 7 > max (1 , 7,).

(2.4). It is worth noticing that the existence of a distribution of
¢-planes implies the existence of a distribution of (# —g)-planes. An
argument analogous to the one followed above, using the Gauss curvature
form, yields the following

THEOREM (2.5). Let M be a smooth compact orientable manifold of
dimension even n and suppose that it has a distribution of oriented g-planes
with g odd (1 < g <n). Then the Euler-Poincaré characteristic of M is null.

3. PROOF OF THEOREMS A AND B

(3.1). To every distribution there corresponds a smooth subbundle E;
of the tangent bundle with the fibre of dimension #;. Denote the quotient
bundle by Q;=TM/E;. From the Whitney duality formula p (TM) =
= 2 (Q,) p (E,) it follows that

(32)  £p(TM) =2, (Qi) + 211 Qi) 21 (Ei) ++ -+ 21 (Q) ra (B) + 2, (E0)

where the product between classes is the ‘“cup product” in the ring
H*(M ; R).
If 27> n;, then » > »/2 and hence p,(E;) =o0. If moreover
(3.3) 22 (Qi) 25 (E)) =0 Vi,s=1,ht+s=r
then
2, (TM) = 2, Q0 27 > n;.

Notice that, since the Pontrjagin ring may have divisors of zero,
condition (3.3) does not imply that either 2,(Q;) =0 or p,(E)) =0. On
account of our assumptions, from theorem (1.1) one can conclude that

2, Q=0 27 > max (ny,- -, n).

This proves theorem A.
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(3.4)." It is well known. that if E; < TM is isomorphic to an integrable
subbundle, then by Bott’s theorem

$,Qp=o r>2¢;
where ¢; = z—#n;. Hence in the assumptions of theorem A, if
m;ma’;(”l"“:”k) <44
then one has for the integers % for which m <74 < 4¢;
QD=0 27 >
without assuming that Q; be integrable. This is meaningful if 2 > 2.

(3.5). Conversely let us assume Q; to be integrable. Then, under our
assumptions, one has at the same time

H(MM)y=0 7 Q)=o0 27 >max (7, 4¢5)

hence an account of (3.2)
24 (@Q) P, (E) =0 Vi, s=1,hts=r

This ends the proof of theorem B.

R emark. The results of theorem (2.1) hold in the more general situation
of an almost multifoliated riemannian structures on a manifold, i.e.

TM =E, +- -+ E

where E; are not necessarily complementary. Infact by increasing the
number of distributions, with a suitable choice of the metric [7] it is possible
go back to the previous situation.
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