ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

IDA CATTANEO GASPARINI, GIUSEPPE DE CECCO

Complementary distributions and Pontrjagin classes

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **69** (1980), n.1-2, p. 26–30. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1980_8_69_1-2_26_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Geometria differenziale. — Complementary distributions and Pontrjagin classes (*). Nota (**) di Ida Cattaneo Gasparini e Giuseppe De Cecco, presentata dal Socio straniero A. Lichnerowicz.

RIASSUNTO. — Da una condizione necessaria per l'esistenza di k(>2) distribuzioni complementari su una varietà si deducono legami tra le classi di Pontrjagin delle distribuzioni e dei fibrati trasversi.

Let M be a riemannian smooth orientable manifold of dimension n (even or odd) and suppose that M has k complementary (smooth) distributions of oriented n_i -planes $(i = 1, \dots, k)$; i.e. for every point $p \in M$ the tangent space $T_p(M)$ can be decomposed into the direct sum of the subspaces T_p^1, \dots, T_p^k of $T_p(M)$ where dim $T_p^i = n_i$ (and hence $n_1 + \dots + n_k = n$).

Then one says that M admits an "almost product" or "almost multiproduct" structure.

In a paper of 1969 [3] one of the present authors showed that the vanishing of certain Pontrjagin classes is a necessary condition for the existence of k complementary distributions on M. After a review of these results we prove the following

Theorem A. Let M be a riemannian smooth orientable manifold of dimension n. Furthermore let M have k complementary distributions $E_i \subset TM$ and let the bundle $Q_i = TM/E_i$ have fibre of dimension q_i with

$$q_i = n - n_i$$
 and $n_1 + \cdots + n_k = n$.

Finally let $p_r(E) \in H^{4r}(M; \mathbf{R})$ denote the r-th real Pontrjagin class of the bundle E. Then if

$$p_h(Q_i) p_s(E_i) = 0$$
 $\forall h, s \ge 1$ and $h + s = r$

one has

$$p_r(Q_i) = o$$
 $2r > \max(n_1, \dots, n_k)$.

Using Bott's "Vanishing Theorem" one can, in a certain sense invert the preceding result obtaining

Theorem B. Let M be a riemannian smooth orientable manifold of dimension n. Furthermore let M have k complementary distributions $E_i \subset TM$

^(*) This work was carried out in the framework of the activities of the GNSAGA (CNR - Italy).

^(**) Pervenuta all'Accademia l'1 luglio 1980.

and let the bundle $Q_i = TM/E_i$ have fibre of dimension q_i with

$$q_i = n - n_i$$
 and $n_1 + \cdots + n_k = n$.

If Q_i is integrable, then for $2r > \max(n_1, \dots, n_k, 4q_i)$

$$p_h(Q_i) p_s(E_i) = 0$$
 $\forall h, s \ge 1$ and $h + s = r$

holds.

In order to give a self-contained presentation we recall the necessary preliminaries.

I. PRELIMINARIES

Let M be a smooth (paracompact) manifold and let E be a vector \mathbf{R}^q -bundle on M. As is well known, the total (real) Pontrjagin class p(E) of E is defined by

$$p(\mathbf{E}) = \mathbf{I} + p_1(\mathbf{E}) + \dots + p_{[q/2]}(\mathbf{E}) = \left[\det \left(\mathbf{I} - \frac{\mathbf{I}}{2\pi} \Omega \right) \right]$$

where Ω is the curvature of an arbitrary connection on E and

$$p_r(\mathbf{E}) \in \mathbf{H}^{4r}(\mathbf{M}; \mathbf{R})$$
,

where $H^*(M; \mathbf{R})$ is the de Rham cohomology ring of M. $p_r(E)$ is called the *r*-the Pontrjagin class of E. Clearly $p_r(E) = 0$ for 4r > n if $n = \dim M$. Moreover if E is an oriented bundle of even dimension q, then the class $p_{q/2}(E)$, which is locally represented by the closed form $(2\pi)^{-q} \det \Omega$, equals the square of the Euler class; this latter is strictly connected with the Euler-Poincaré characteristic of the manifold under consideration, if E = TM.

If E is the tangent bundle TM, then the classes are also called *Pontrjagin classes of* M and are often denoted by $P_r(M)$.

Let Ω be the curvature for of a connection on the principal fibre bundle of orthonormal frames, then the explicit expression of Pontrjagin classes is given by $^{(1)}$

(I.I)
$$p_r(TM) = \left[\frac{[(2r)!]^2}{(2^r r!)^2 (2\pi)^{2r}} \sum_{(i)} \Theta_{i_1 \cdots i_{2r}}^{(2r)} \wedge \Theta_{i_1 \cdots i_{2r}}^{(2r)} \right]$$

where

$$(1.2) \qquad \Theta_{i_1\cdots i_s}^{(s)} = \frac{1}{s!} \sum_{\langle j \rangle} \delta(i_1, \cdots, i_s; j_1, \cdots, j_s) \Omega_{i_1j_2} \wedge \cdots \wedge \Omega_{j_{s-1}j_s}$$

s is an even integer and $\delta(i_1, \dots, i_s; j_1, \dots, j_s)$ is the generalised Kronecker symbol.

(1) See J.A. Thorpe [6].

For n even, the n-form

$$\Omega^{(n)} = \left[2^n \pi^{n/2} \left(\frac{n}{2} \right)! \right]^{-1} \Sigma \varepsilon_{i_1 \cdots i_n} \Omega_{i_1 i_2} \wedge \cdots \wedge \Omega_{i_{n-1} i_n}$$

called Gauss curvature form of M, is a representative of the Euler class of TM and if M is compact and orientable, the Gauss-Bonnet theorem says that

$$\int_{M} f^* \Omega^{(n)} = \chi(M)$$

where $\chi(M)$ is the Euler-Poincaré characteristic of M and $f: M \to \tilde{G}_n(M)$ is an orientation of M, $\tilde{G}_n(M)$ being the Grassmann bundle of the oriented *n*-planes tangent to M.

2. A VANISHING THEOREM

We can now prove the following theorem [3].

THEOREM (2.1). Let M be a riemannian smooth orientable manifold of dimension n which admits k complementary (smooth) distributions of oriented n_i -planes ($i = 1, \dots, k$). Then the real Pontrjagin classes $P_r(M)$ are null for $2r > \max(n_1, \dots, n_k)$.

Proof. Let \tilde{E} be the principal fibre bundle of the orthonormal frames (associated to the tangent). Its structural group is $\tilde{G} = SO(n)$ (the rotation group). We recall that the Lie algebra $\tilde{\mathfrak{G}}$ of SO(n) can be identified with the space of the skew-symmetric matrices of order n.

Let us consider the subbundle E of \tilde{E} formed of the frames "adapted" to the distributions, viz. the orthogonal frames $\{e_i\}$ $(i=1,\dots,n)$ so that the vectors

$$\{e_{\alpha_j}\}\ \alpha_j = n_1 + \cdots + n_{j-1} + 1, \cdots, n_1 + \cdots + n_j \qquad (n_0 = 0)$$

form a basis for T^{j} . The bundle E can be regarded as having structural group

$$G = SO(n_1) \times SO(n_2) \times \cdots \times SO(n_k)$$
.

A connection ω on E is represented by a 1-form which takes values in the Lie algebra \mathfrak{G} of G, where \mathfrak{G} is the direct product of the Lie algebras of $SO(n_r)$. Hence one obtains

$$\omega_{ii} = 0 \qquad \omega_{ij} + \omega_{ji} = 0 \qquad i, j = 1, \dots, n$$

$$\omega_{\alpha_i \beta_j} = 0 \qquad i \neq j \qquad i, j = 1, \dots, k;$$

$$\alpha_i, \beta_j = n_1 + \dots + n_{j-1} + 1, \dots, n_1 + \dots + n_j.$$

Analogous relations hold for the components of the curvature form Ω . Therefore, if $2r > \max(n_1, \dots, n_k)$, then each term in (1.2) will have a factor $\Omega_{\alpha_i\beta_j}$ with $i \neq j$; the assertion $p_r(TM) = P_r(M) = 0$ then follows from (1.1).

Remarks (2.2). If k = n and therefore $n_1 = 1 \ \forall i$ (i.e. the manifold is parallelizable) then $P_r(M) = 0 \ \forall r$. It follows that the curvature vanishes. The manifold is then flat.

- (2.3). For k=2 (and obviously for k=1) the theorem is not meaningful. As for $n_1+n_2=n$, $\max{(n_1,n_2)}\geq \lfloor n/2 \rfloor$ and consequently $P_r(M)=0$ $\forall 2 \ r>\max{(n_1,n_2)}$.
- (2.4). It is worth noticing that the existence of a distribution of q-planes implies the existence of a distribution of (n-q)-planes. An argument analogous to the one followed above, using the Gauss curvature form, yields the following

THEOREM (2.5). Let M be a smooth compact orientable manifold of dimension even n and suppose that it has a distribution of oriented q-planes with q odd ($1 \le q < n$). Then the Euler-Poincaré characteristic of M is null.

3. PROOF OF THEOREMS A AND B

(3.1). To every distribution there corresponds a smooth subbundle E_i of the tangent bundle with the fibre of dimension n_i . Denote the quotient bundle by $Q_i = \text{TM}/E_i$. From the Whitney duality formula $p(\text{TM}) = p(Q_i) p(E_i)$ it follows that

$$(3.2) p_r(TM) = p_r(Q_i) + p_{r-1}(Q_i) p_1(E_i) + \dots + p_1(Q_i) p_{r-1}(E_i) + p_r(E_i)$$

where the product between classes is the "cup product" in the ring $H^*(M; \mathbf{R})$.

If $2r > n_i$, then $r > n_i/2$ and hence $p_r(E_i) = 0$. If moreover

$$(3.3) p_h(Q_i) p_s(E_i) = 0 \forall h, s \ge 1, h+s = r$$

then

$$p_r(TM) = p_r(Q_i) \qquad 2r > n_i.$$

Notice that, since the Pontrjagin ring may have divisors of zero, condition (3.3) does not imply that either $p_h(Q_i) = 0$ or $p_s(E_i) = 0$. On account of our assumptions, from theorem (1.1) one can conclude that

$$p_r(Q_i) = 0$$
 $2r > \max(n_1, \dots, n_k).$

This proves theorem A.

(3.4). It is well known that if $E_i \subset TM$ is isomorphic to an integrable subbundle, then by Bott's theorem

$$p_r(Q_i) = 0 r > 2 q_i$$

where $q_i = n - n_i$. Hence in the assumptions of theorem A, if

$$m = \max(n_1, \dots, n_k) < 4q_i,$$

then one has for the integers h for which $m < h < 4q_i$

$$p_r(Q_i) = 0 2r > h$$

without assuming that Q_i be integrable. This is meaningful if k > 2.

(3.5). Conversely let us assume Q_i to be integrable. Then, under our assumptions, one has at the same time

$$p_r(TM) = 0$$
 $p_r(Q_i) = 0$ $2r > \max(m, 4q_i)$

hence an account of (3.2)

$$p_h(Q_i) P_s(E_i) = 0$$
 $\forall h, s \ge 1, h+s=r.$

This ends the proof of theorem B.

Remark. The results of theorem (2.1) hold in the more general situation of an almost multifoliated riemannian structures on a manifold, i.e.

$$TM = E_1 + \cdots + E_k$$

where E_i are not necessarily complementary. Infact by increasing the number of distributions, with a suitable choice of the metric [7] it is possible go back to the previous situation.

REFERENCES

- [1] R. Bott (1972) Lectures on characteristic classes and foliations, « Lect. Notes in Math. » 279, Springer, 1-94.
- [2] I. CATTANEO GASPARINI (1963) Connessioni adattate a una struttura quasi prodotto, «Ann. Mat. pura e appl. », 63, 133-150.
- [3] I. CATTANEO GASPARINI (1968-1969) Curvatura e classi caratteristiche, « Rend. Sem. Mat. Un. », Torino, vol. 28, 19-30.
- [4] F. W. KAMBER, Ph. TONDEUR (1975) Foliated Bundles and Characteristic Classes, «Lect. Notes in Math. », 493, Springer.
- [5] H. V. PITTIE (1976) Characteristic classes of foliations, Pitman Pub.
- [6] J. A. THORPE (1964) Sectional Curvature and Characteristic Classes, «Ann. of Math.», 80, 429-443.
- [7] I. VAISMAN (1970) Almost-multifoliate Riemannian manifolds, «An. Sti. Univ. Al. I. Cuza », sect. 1, 16, 97-104.