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Fisica matematica. — On a physical interpretation of Fichera's
Junction. Nota di GEORGE JAa1ani, presentata® dal Socio G. F1-
CHERA. '

RIASSUNTO. — Viene interpretato, dal punto di vista della teoria delle volte prismatiche
sottili di I. N. Vekua, il significato fisico di una funzione impiegata da G. Fichera nella teoria
delle equazioni lineari alle derivate parziali del secondo ordine con forma caratteristica non
negativa.

I.N. Vekua [4], [5] set the problem concerning the investigation of
prismatic shells with cusped edges. This problem is connected with the
consideration of degenerate equations of higher order or systems of degen-
erate elliptic equations of second order.

I. SHELLS’ CUSPS

Let Oxyx, x5 be a Cartesian coordinate system. We denote by D the
projection of the prismatic shell on the plane Ox; x,. Let L be a piecewise-
smooth boundary of the domain D and H (x,, x,;) = 0 its equation in some
neighbourhood of a smooth point P of L. Hence

oH (21, x2)

@=1,2
Xy

are continuous functions in some neighbourhood of the above mentioned
smooth” point P and '

| [3H<x1,x2>]2+[aHocl,xz)];O

%, %y

at this point. Further we assume that grad H has the direction of the inside
normal n.
By

=

)
25 (2, %5) =2 (%1 ,%) —A(x,%) =0,

) (=)
where % (x,,%,) and % (x,,x,) are, respectively, the upper and the lower sur

faces of the shell [4], we denote the shell thickness.

DEFINITION 1. The points Pe L at which the thickness vanishes will
be called cusps, while the other points will be called regular ones.

(*) Nella seduta del 10 maggio 1980.
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&+ (=)

Let o (P) be a neighbourhood of P and let the functions %, 4 have con-
tinuous derivatives in @ (P) N D U L, nevertheless the continuity of these
derivatives could fail in P or on some arc of L containing P, where the
derivatives will be infinite.

DEFINITION 2. A cusp which is also a smooth point of the boundary L
will be called:

a blunt cusp if

lim 22 Q) _

Q—>P on

4+ oo, Qew(P)ND;
a sharpened cusp if

+ o0 > lim
QP

M__@;Q) >o0, Qea(P)nD.

In figures 1-6 are represented all the possible configurations of the normal
sections (side views) of shells at the point P. For simplicity, we suppose
4 () -
P=0O. T and T denote the tangents at the point P, respectively to the
-+ [ ) -
sections % () and % () of the surfaces % and /%, with the plane which passes

through the zg-axis and contains the vector n.

L 2P
on
In this case it can be:
) (=)
o (P)y h(Py .
a) = 4+ o0 5, = T (see fig. 1);
+) ‘ (=)
aH(P) . 3 (P) ] )
b) o _J_—|—oo , o0 < ———= <0 (see fig. 2);
+) {=)
24 (P oh (P ,
) —-9;—) = -+oo , —W()— =0 (see fig. 3). (

Other two configurations are possible and they can be obtaihed by &)
) —)
and ¢) interchanging the roles of %2 and 4.

II. +o0> aha;m >o.

In this case it can be:

) R =)
o (P) . o4 (P) .
d) + oo> o >0 , 00 < ———= <0 (see fig. 4);
(€2 (=)
ok (P) 2h(P) \
e) +oo> 5 >0 |, 5, =0 (see fig. 5).
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(+)
hin) (+)
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4 (+)
T T

P N n P

(=) (=)
T hin) T =)
hin)
tig.1 tig.2
X, X3
(+() |
hin (G0
[G2]
) h
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(=)
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=)
h{n) )
T )
h(n)
f19.3 tig.4
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(+)
h(n)
(6]
) T
- —
0 P ) n
)
h{n)
tig.5 tig.6

Another configuration is possible and it can be obtained by ¢) inter-
«+) (-

changing the roles of %2 and 4.

m., A&
on

In this case
%) )
oah(P) on(P)
¥ — =0 o =0 (see fig. 6).
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CONCLUSIONS

In the case of the sharpened cusps the section of the shell touchs the
xg-axis at the point P with the vertex while in the case of blunt cusps the

section of the shell is tangent to xjaxis at the point P.
. . +) =)

The angle of a blunt cusp (i.e. the angle between T and T) belongs to
the closed interval [n/2, =], the angle of a sharpened cusp belongs to the
interval [0, ®/2) (except the case &) in which the angle belongs to the open
interval (o, 7).

o = '
In the case of blunt cusps at least one of the curves % (%), 4 (%) is per-

pendicular, at the point P, to the middle plane of the prismatic shell.
@ =)

If 2= —/ = /% we have only the cases of type @), &), /) and hence the .
angle of the cusp is equal to = for a blunt cusp and is less than = for a
sharpened cusp.

2. VEKUA’S EQUATIONS OF THIN SHELLS

By approximation of order N = o of Vekua's variant of the thin shell
theory we mean [4], [5]:

>
lf‘(‘”l »%3)
I

U; (X, X x"\'—————
L<l! 2 3)’\’ Z}I(xl,x2>(

‘ui(x11x2vx8>dx3‘=yi(xl’x2): i=l’2)3y
)
h(xy,%9)

where #; is the displacement’s component respect to the x;axis (=1, 2, 3).
The basic system of equations has the form

" A0 (xy, x,) ok o, ok o
(1 whbog + (0 + ) A oxg e ox, g e Ty O%g
oh v ) ‘
max‘: +%Xﬂ=0 «a,p=1,2, (7,%)€D,
(2 Bhog+ 22 L 1% o (4 m)eD
) Vg My My 2 1 3 ’ 1) 42 )
where A is the two-dimensional Laplace operator,
e (%, %p)
@ (xl ’ x2> - axa 1
)
h(xl{f‘z)
Xi (21, %) = Xi (21 %y, %5) dag, i=1,2,3.

=)
h(zxy,29)
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By X; we have denoted the components of the volume force, A, u are the
Lamé constants and the usual summation convention is used.

All the physical quantities on the shell boundary will be deﬁned by means
of their llmlts calculated from the inside.

3. FICHERA’S FUNCTION

Let now consider the equation [1-3]

> u
g 0x

() @0, m) g +b°‘<x1,x2> ot eta myuln, m) = f(n, @),

OC,B=I, ’ (x13x2>eD7
with nonnegative characteristic form, i.e.
(4) aaa(xl)xé)iagBZO ’ fX,ﬁ=I,2 (xl)x2)eDUL)

for any real &,, a =1, 2.

Fichera’s function is defined in the points of the boundary where
a® (xy, %)) namg =0

and has the following representation:

® et = (2,

o%p

here 7, (« = 1, 2) are the components of the vector n.

Let us calculate Fichera’s function 4* for the equation which we obtain
after having multiplied the equation (3) by a function ¥ (x;,x,) which has
continuous derivatives in some neighbourhood of the considered point of the
. boundary. We obtain for 4" the following representation:

af of
5 (1, 7)) = (pé“— 2pa ) 7y = (é“— o )%a

o%p oxg
2
—aaana—a—x% = b (%1, %),
because a™ 7, = 0. Hence, if the function vy is positive, the sign of Fichera’s

function does not change.

4. THE MAIN STATEMENT

Under the below mentioned conditions we prove the following statement:
In a blunt cusp Ficherd's function for the equation (2) is negative and in a
sharpened cusp is non negative.
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In the case of sharpened cusps we have:

P
+00>%20 . h(n,m)eCl (@) NDUL) ®

and from-(2), (5) it follows that Fichera’s function assumes the form:

5P) [a/z(P) . aﬁ(P)]na%O'

Xy, 0%y

In the case of blunt cusps we have:

ok (P)

n

— oo, h(n,wm¢C (@) NDUL)

and obviously Fichera’s function cannot be defined.

But if it exists a function
P(xl ,xg)ecl((,o <P> N D),

which fulfills the following conditions:

1) p(#,%) >0 in oP)NDUL—L) ®,
o (xy , %) 3p (%1, %3) o
2) pT , /lTGC(O)(P)nDUL), w=1,2;
p (1,
3) /l(xlyx2> 9(3;1 x2> #Oy
(@1, 2Z0)=P
then

e, %) 2 (2, 22)eCH(@(P)NDUL).
By multiplying ® both sides of the equation (2) by p (#;, %) we have:

| o
‘ 8/1 3‘1}3 X3 .
p/zAw;;—i—paa Sxa+92p._0’ (x1,20€0(PYND.

For this equation Fichera's function can be defined and has the following
form:

ok (2, ? ) %o) b (%1,
b (xl ’ X2) = [P (xl ’ x2> (;V; x2) - 4 (xl x;l (xl x2) ] Ng =
o . o
99 (xl ) x2>

= —h(x1, %) P

(1) By C! we denote the class of the functions which have continuous derivatives on
the set shown in parentheses and by C we denote the class of the continuous functions.

(2) L is the subset of L where 84/3n = + oo.

(3) This is permitted because, in the viewpoint of the shell theory, we consider the
equation (3) only inside the shell projection and there p > o.
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Hence
6(P) <o,
because
20—,
m

in o (P) N D for any o (P) sufficiently small.
It may be noted that when
oh (P)

:0’
n

it is still possible to introduce a function p(x;,x,) fulfilling the above

mentioned conditions 1)-3) and such that ¢ (R) = -+ oo, R€ L @ Then
Fichera’s function & (x,, x,) is positive at the point P, because

in o (P) N D for any o (P) sufficiently small.
In particolar, let

(6) %ﬁso*(m‘l),« for H—o ®, o< <1,
where the notation
f=0*¢g , H-o,

means that there exists

lim f-gt#0,00.

H-so0

If the hypothesis (6) is satisfied, then a function ¢ (x;,x,) can have the
following representation:

H(xl:ftz)
dH

) e (%1, %) = 7

(1}

Let’s now verify that the function (7) satisfies the condition 1)-3).
The condition 1) is obviously fulfilled.

(4) I. is the subset of L where ok[3n = o.
(5) Obviously, from Q — P it follows that H(Q) —o.
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We observe first that from (6) it follows:

—1
lim h(xy, %) lim a/&/aH1 _ ' m hfon (aHI/a/z) _
H->o0 I—IM H->0 %Hu_ X H-o0 HK—
* n—1 -1
— ' tfim Q.SHI_> lim (ﬁ) 20,00,
% Hso - H* H-—>0 \ 7
because
oH oH \? (aH )T
Sutslai = 0,00.
o7 |H=0 [( le) + %y IH=0¢ e
That is
h(xy, %) =0"(H) , H-o, o< n<I.
Further:
lim PG g, GePH L g, B o
H—o0 H* H—0 (] —x) H* I1—% Hso /&
that is
o(H, %) =0"(H"™ , H-—o, o<%x<I.

It is obvious that (see (7))
p(x,%)€EC(0(P)NDUL)NC (o (P)N D),

because 0 < % < I.

Besides we have:

h(xy, %) ok H
) € p (21, %) oo =P oH oz,
-1
= O* (H™ 0% (H*™Y) (_aH ) H g, a=1,2
n %y
and
@, %) _, ;1 8H  oH N

(9) /z(xl,xz)a—xa~—hh e oy a=1,2.

From (8) and (9) it follows that o (x,, #,), defined by (7), satisfies the con-
dition 2).

Finally we have:

oH

(@1,29)=P on

= #0

2p (%, , x.
ﬁ(ﬂﬁ,xz)——“l—g—)— .

on

and the condition 3) is also fulfilled.

30 — RENDICONTTI 1980, vol. LXVIII, fasc. 5.
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5. EXAMPLES

Let us now consider the prismatic shells whose thicknesses are given
by the following equations:

(10) 25 (20, 1) = Do %5, . m>o
(11) 25 (%y, %) = by (1 — 7, r <1
(12) 2k (xy, %) = g PR . x>0
(13) 2/ (xy, %) = 2o e ) 7 <1

where %, and » are positive constants and
2 2 2
¥ =x txe.

In the cases (10), (12), the boundary L contains an open interval of the
z;-axis and in the cases (11), (13) the boundary contains an open arc of the
circle » = 1 or the whole circle.

It is obvious that in the cases (10), (11) the points of the above mentioned
open interval or of the open arc, respectively, are blunt cusps for * <1 and
sharpened cusps for » = 1. In the cases (12), (13) these points are always
sharpened cusps.

In the cases (10)~(13) equation (2) has, respectively, the following forms:

(I4> }lox; AU:; "l‘%}lox’;—l il + L'f’(a =0, (xl,xg)GD »
9%y e
(15) o (1 —7’2>x Avg — 2 %/, (1 _72)u—lxa s + — 50(3 =0,
% 13
i‘ (xl H xZ) € D ’
(16) g e % Aé/# o whg xy e s + L X;=o0 , (%, %)€D,
" 9%y W
(17) hro €10 Mgy 2 whgxo (1 — )R s L L g,
‘ : My 13
(xl ’ x2) €D.

In the cases (10), (11 ‘we can assume Xy, %), resi ectively, equal to @
e 2 P q

(18) ot xyT,

(19) S het (1 —7)"

(6) See (7) and the remark at the end of the paragraph 3.
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and after having multiplied equation (14) by the function (18) and equation
(15) by the function (19), we obtain

1—x
(20) ’ x5 Avg -} % zz;z Tf/zo Xs=o0, (#1,7%,) €D,
v (1 —A" o
(21) (1 —7®) Avg — 2 %z, axz + pﬁo) , Xs=o0, (xl., %)€D .

System (1) may also be simplified in the same way. :
Finally Fichera’s function for the equations (20), (21), (16), (17) assumes,
respectively, the forms:

é(x1,0>=1(—'1 ’ é(xl)x2>[7=1=2(x—'l);
B(x1,0)=0 , b(x,%)lm=o0.

Thus, in a blunt cusp Fichera’s function for the equations (20), (21).
(16) (17) is negative and in a sharpened cusp is nonnegative.

6. REMARK

In a forthcoming work under some convenient assumptions the following
statement will be proved.

The bounded displacement (i.e. the generalized solution in some sense of
the system (I), (2) with boundary value data on a piece of boundary or on
whole one where 2> 0 or 4 << 0) of the shell is uniquely defined through its
values at the regular points and at the blunt cusps of the boundary.

Thus, if the displacement will be given on the boundary, the sharpened
cusps on the shell boundary will be free from the boundary conditions. This
fact is in good agreement with physical intuition.

Acénowleéigemem‘. — The author expresses his most sincere thanks to
Prof. G. Fichera and Prof. P. Castellani for the useful and stimulating
discussions concerning this paper.
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